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1 INTRODUCTION

The Air Force places high demands on operational capabilities of their aircraft that require
increased performance and reliability. Among the most critical systems for the Air Force
fleet are the turbine engines, especially considering that a fighter jet relies on a single engine
that must meet high thrust-to-weight and durability targets for a large range of operating
conditions. Current and next-generation turbine engines will increasingly depend on onboard
health monitoring and prognosis systems to help ensure the reliability, safety, and readiness
of air vehicles. In order to effectively interpret the measurement data required for monitoring
and prognosis of turbine engines, efficient models that capture the essential complex dynamic
interactions of nonlinear, aeroelastic, multistage, and localization phenomena must be em-
ployed. In this research, advanced structural dynamic and aeroelastic modeling techniques
have been developed for turbine engine rotors, which will directly support the emerging
structural health monitoring and system prognosis needs of Air Force engines and aircraft.

In contrast to this research, previous approaches often consider that balded disks are isolated
from their neighboring stages for structural dynamic analyses, i.e. that they are in vacuo,
isolated from other stages, and free of cracks and other damage. In reality, a bladed disk
in a gas turbine engine is one stage of a multistage rotor. The bladed disk is also subject
to the effects of the fluid, which provides aerodynamic excitation, damping, and interblade
coupling. Furthermore, the blades can suffer both foreign object damage and high cycle
fatigue. In particular, a crack can form in one or more blades, introducing geometric changes
and nonlinearities in the system that can qualitatively change the dynamics of the blade,
the bladed disk, and the full multistage rotor.

The PIs and their collaborators have developed efficient vibration modeling and simulation
capabilities for realistic turbine engine rotors that account for each of the following com-
plexities: aeroelastic coupling, multistage coupling, and nonlinearities due to cracks. It has
been shown that capturing these aspects of the system are critical to predicting the forced
response, including the localization of the response about certain blades. It is well known
that small, random blade-to-blade differences, called mistuning, can lead to localization.
However, there are many other factors that can cause or influence localization phenomena
such as cracks or multi-stage analysis. Vibration response that is coupled strongly across
multiple stages has also been observed for other operating conditions. Furthermore, it has
been shown that both structural and aerodynamic coupling between blades can have a strong
influence on vibration localization and forced response levels.

Together, the nonlinear, multistage, and aeroelastic methods developed by the PIs com-
prise a critical collection of unique, advanced modeling techniques for turbine engine rotors.
Therefore, it is strongly believed that combining these novel capabilities provides an un-
precedented opportunity to develop substantially new predictive technologies that will have
important applications to design and online structural health monitoring and system prog-
nosis of turbine engines. Online monitoring is generally preferred to offline monitoring in
most applications. However, technical difficulties faced by current methods and problems as-
sociated with accurately modeling operating conditions have limited the available techniques
to mostly offline detection of large damage. Nevertheless, the use of on-board reasoners is
an important feature of future air vehicles. These vehicles mandate a drastic reduction in
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maintenance and turn-around time between missions to increase their responsiveness and op-
erational capabilities. The research performed provides the necessary fundamental basis for
the development of advanced online health monitoring where nonlinear and fluid-structural
interactions are crucial. In contrast, existing methods focus on structures and have difficulty
tackling the complexities found in fluid-structural systems.

A class of techniques used for damage detection are based on vibratory responses. Most such
methods monitor changes in the frequencies and modes of vibration. Other current tech-
niques use subspace identification and updating, wavelet analyses, evolutionary algorithms,
Ritz or stochastic methods, and others. These techniques are designed for linear vibrations
while far fewer apply to nonlinear systems. Some nonlinear methods are based on system
identification, while others use neural networks, phase space reconstruction, or Lyapunov
exponents. These nonlinear methods have important limitations, e.g. some have difficulty
tackling high-dimensional systems, others do not predict the damage location or level, or do
not detect simultaneous damages. The results of the PIs show that the use of nonlinear and
localization phenomena for detecting damage holds great potential, especially for turbine
engine rotors.

In early work, simplified models with only several degrees of freedom (DOF) were used to
study the dynamics of mistuned bladed disks. While such simplified models (like lumped
parameter models) are convenient for investigating the effects of major system parameters
(mistuning, structural coupling), they are not adequate to study real/practical bladed disks.
Instead, models based on the finite element method (FEM) are typically used to represent
the actual bladed disks accurately. However, for a mistuned disk with a specific mistuning
pattern, FEM requires a model for the whole bladed disks, which usually has millions of
DOF. Thus, when multiple mistuning patterns are of interest, e.g., in the case of Monte
Carlo simulations and parametric studies (e.g. during design stages), FEM becomes compu-
tationally formidable as every mistuning pattern requires a separate (full) analysis. Hence,
accurate and efficient reduced-order models (ROMs) have been developed, including ROMs
based on the subset of nominal modes (SNM) method and the component mode mistuning
(CMM) method that use tuned system modes as a modal basis (which allows a more easy
computation of the aerodynamic forces).

Previous work has shown that interblade structural coupling is a critical factor affecting
the dynamics of mistuned bladed disks. In operating conditions, bladed disks are always
interacting with flows, and hence, bladed disks exhibit both structural and aerodynamic
coupling. Thus, aeroelastic calculations are necessary for accurate predictions. Although
compact and accurate structural reduced-order models have been developed, only a few
studies of the dynamics of mistuned bladed disks have been conducted with considerations
of aerodynamic forces. Flow models have been developed to calculate the unsteady pressure
on the blades by (usually) assuming linearity of the unsteady pressure with respect to the
displacements of the blades. In addition, a model reduction of the unsteady aerodynamics can
be employed. Although 2-D and 3-D computational fluid dynamics models for passage flows
have been developed recently, most mistuning analyses utilizing ROMs are purely structural.
However, the aerodynamic forces acting on the blades provide additional interblade coupling,
which is critical for predicting the forced response of mistuned bladed disks, especially when
the structural damping is relatively small and comparable with the aerodynamic damping.
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In the following, a review of the research conducted (activities, findings and impact) which
addresses the challenges outlined above through an integrated and comprehensive modeling
effort for predicting the complex dynamic interactions of nonlinear, aeroelastic, multistage,
and localization phenomena in turbine engines, is provided.

2 ACTIVITIES

2.1 Fluid-Structural Coupling Effects on the Dynamics of Mistuned Bladed Disks

Mistuning changes the vibration of bladed disks dramatically. Various aeroelastic models
have been use to investigate the free vibration and forced response problems of mistuned
bladed disks. Most of these models used simplified structural and/or aerodynamic models.
The traditional way to incorporate the aerodynamic coupling in the high fidelity structural
models is to use the cantilever-blade normal modes to calculate the unsteady aerodynamic
forces. In this work, a new reduced order modeling approach is developed by using the tuned
system modes to calculate the unsteady aerodynamic forces directly. This new approach
is applied to an industrial rotor. The results show that aerodynamic coupling has signifi-
cant effects on the vibration of bladed disks for the case studied. Also, constraint modes
are needed to yield accurate results if cantilever-blade normal modes are used to calculate
the unsteady aerodynamic forces. However, using the tuned system modes to calculate the
unsteady aerodynamic forces saves a significant amount of computation time compared to
the method using both cantilever-blade normal modes and constraint modes.

2.2 Convergence Predictions for Aeroelastic Calculations of Tuned and Mistuned Bladed
Disks

Mistuning changes the dynamics of bladed disks significantly. Frequency domain methods for
predicting the dynamics of mistuned bladed disks are typically based on iterative aeroelastic
calculations. Converged aerodynamic stiffness matrices are required for accurate aeroelas-
tic results of eigenvalue and forced response problems. The tremendous computation time
needed for each aerodynamic iteration would greatly benefit from a fast method of predicting
the number of iterations needed for converged results. A new hybrid technique is proposed to
predict the convergence history based on several critical ratios and by approximating as lin-
ear the relation between the aerodynamic force and the complex frequencies (eigenvalues) of
the system. The new technique is hybrid in that it uses a combined theoretical and stochas-
tic/computational approach. The dynamics of an industrial bladed disk is investigated, and
the predicted convergence histories are shown to match the actual results very well. Monte
Carlo simulations using the new hybrid technique show that the aerodynamic ratio and the
aerodynamic gradient ratio are the two most important factors affecting the convergence
history.
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2.3 Estimation and Veering Analysis of Nonlinear Resonant Frequencies of Cracked Plates

In this work, veering phenomena in the nonlinear vibration frequencies of a cantilevered
cracked plate are investigated, and an efficient method for estimating these frequencies is
proposed. Of particular interest is the vibration response in parameter regions where the
natural frequency loci show veerings. For a representative finite element model, it is shown
that the veerings due to crack length variation involve the switching of mode shapes and
modal interactions. The nonlinearity caused by the crack closing effect is then introduced,
and its effect on the vibration response near the veerings is discussed. The nonlinear forced
response analysis is carried out using a hybrid frequency/time domain method, which is based
on the method of harmonic balance. The nonlinear vibration response near loci veerings and
crossings due to the variation of crack length is investigated in detail. Finally, a novel method
for estimating the nonlinear resonant frequency is introduced by generalizing the concept of
bilinear frequency approximation, and the method is validated with the results of nonlinear
forced response analysis for several veering regions.

2.4 An Efficient Reduced Order Modeling Technique for Nonlinear Vibration Analysis of
Structures with Intermittent Contact

In this work, a reduced order modeling framework for nonlinear vibration problems of elastic
structures involving intermittent contact is proposed. Of particular interest is a vibration
problem of plate-like elastic structures with a crack with a large number of degrees of free-
dom involved on the crack surfaces. Due to the localized nature of such nonlinearity, the
number of degrees of freedom on the surfaces greatly affects the computational time of the
analysis. Therefore, reducing the number of degrees of freedom on the crack surfaces without
significantly sacrificing the accuracy of the results is a critical issue for conducting vibra-
tion analysis of such structures in a reasonable amount of time. The focus is placed on the
development of an efficient algorithm to select a set of nodes on the crack surfaces, where
nonlinear boundary conditions are imposed. The method is developed based on a procedure
for selecting master degrees of freedom for Guyan reduction. The accuracy, efficiency, and
optimality of the method are discussed in detail and compared with those aspects of previous
methods. The advantages of the new method are demonstrated in terms of the accuracy of
the frequency response and the resonant frequencies.

2.5 Node Sampling for Nonlinear Vibration Analysis of Structures with Intermittent Con-
tact

In this work, a node sampling methodology for nonlinear vibration problems of elastic struc-
tures involving intermittent contact is proposed. Of particular interest is a vibration problem
of plate-like elastic structures with a crack with a large number of degrees of freedom involved
on the crack surfaces. Due to the localized nature of such nonlinearity, the number of degrees
of freedom on the surfaces greatly affects the computational time of the analysis. Therefore,
reducing the number of degrees of freedom on the crack surfaces without significantly sacri-
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ficing the accuracy of the results is a critical issue for conducting vibration analysis of such
structures in a reasonable amount of time. The focus is placed on the development of an
efficient algorithm to select a set of nodes on the crack surfaces, where nonlinear boundary
conditions are imposed. The method is developed based on a procedure for selecting mas-
ter degrees of freedom for Guyan reduction. The accuracy, efficiency, and optimality of the
method are discussed in detail and compared with those aspects of previous methods. The
advantages of the new method are demonstrated in terms of the accuracy of the frequency
response and the resonant frequencies.

2.6 Bilinear Modal Representations for Reduced-Order Modeling of Localized Piecewise-
linear Oscillators

A novel reduced-order modeling method for vibration problems of elastic structures with
localized piecewise-linearity is proposed. The focus is placed upon solving nonlinear forced
response problems of elastic media with contact nonlinearity, such as cracked structures and
delaminated plates. The modeling framework is based on observations of the proper orthogo-
nal modes computed from nonlinear forced responses and their approximation by a truncated
set of linear normal modes with special boundary conditions. First, it is shown that a set of
proper orthogonal modes can form a good basis for constructing a reduced order model that
can well capture the nonlinear normal modes. Next, it is shown that the subspace spanned
by the set of dominant proper orthogonal modes can be well approximated by a slightly
larger set of linear normal modes with special boundary conditions. These linear modes are
referred to as bi-linear modes, and are selected by an elaborate methodology which utilizes
certain similarities between the bi-linear modes and approximations for the dominant proper
orthogonal modes. These approximations are obtained using interpolated proper orthogonal
modes of smaller dimensional models. The proposed method is compared with traditional
reduced order modeling methods such as component mode synthesis, and its advantages
are discussed. Forced response analyses of cracked structures and delaminated plates are
provided for demonstrating the accuracy and efficiency of the proposed methodology.

2.7 Reduced-Order-Modeling for Nonlinear Analysis of Cracked Mistuned Multi-Stage Bladed
Disk Systems

In this work, a novel modeling methodology for the nonlinear vibration analysis of multi-stage
bladed disk systems with small blade-to-blade mistuning and a cracked blade is proposed.
The modeling strategy is based on an efficient stage-wise reduced order modeling method
based on cyclic-symmetry analysis and component mode synthesis. Reduced order models are
constructed for individual stages and assembled by projecting the motion of the interface of
the neighboring stages onto a set of harmonic shape functions. The analysis procedure allows
the stages to have different numbers of blades and mismatched computational grids on the
interfaces of the neighboring stages. Furthermore, the modeling framework is independent
of the modeling method for each stage, which enables the use of various existing modeling
methods of single stages. Moreover, nonlinearity can also be included in the multi-stage
computations, as long as the nonlinearity can be modeled for a single stage. To demonstrate
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the capability of the modeling procedure, the nonlinear effect of crack opening and closing is
considered, in conjunction with the effects of small mistuning. The accuracy and efficiency
of the proposed methods are discussed.

2.8 A Statistical Characterization of the Effects of Mistuning in Multi-Stage Bladed Disks

A great deal of research has been conducted on the effects of small random variations in
structural properties, known as mistuning, in single stage bladed disks. Due to the inherent
randomness of mistuning and the large dimensionality of the models of industrial bladed
disks, a reduced order modeling approach is required to understand the effects of mistuning
on a particular bladed disk design. Component mode mistuning (CMM) is an efficient com-
pact reduced order modeling method that was developed to handle this challenge in single
stage bladed disks. In general, there are multiple stages in bladed disk assemblies, and it has
been demonstrated that for certain frequency ranges accurate modeling of the entire bladed
disk assembly is required because multi-stage modes exist. In this work, a statistical charac-
terization of structural mistuning in multi-stage bladed disks is carried out. The results were
obtained using CMM combined with a multi-stage modeling approach previously developed.
In addition to the statistical characterization, a new efficient classification method is detailed
for characterizing the properties of a mode. Also, the effects of structural mistuning on the
characterization of the mode is explored.

2.9 Reduced-Order Models of Mistuned Cracked Bladed Disks

Predicting the influence of cracks on the dynamics of bladed disks is a very important chal-
lenge. Cracks change the structural response, which in turn changes the crack propagation
characteristics. Hence, accurate and computationally effective means to model the dynamics
of cracked bladed disks and blisks is particularly crucial in applications such as prognosis,
guidance for repairs, characterization after repairs, design, and structural health monitoring.
Most current models of bladed disks exploit cyclic symmetry to gain computational effi-
ciency. However, the presence of cracks and mistuning destroys that symmetry and makes
computational predictions much more expensive. In this work, we develop a new reduced
order modeling methodology which can speed up computations by several orders of mag-
nitude. There are two key components of the new methodology. First, the displacements
and deformations of the crack surfaces are not modeled in absolute coordinates but relative
coordinates. That allows for an effective model reduction based on (fixed-interface Craig-
Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to
define one of the components in CMS as the pristine/uncracked structure (with mistuning).
This approach is used in combination with a set of accurate approximations for the con-
straint modes used in CMS. Second, the effects of mistuning are captured by component
mode mistuning (CMM) which allows the construction of extremely efficient reduced order
models for the pristine/uncracked component with mistuning. The novel method is applied
to a finite element model of an industrial blisk. The combined presence of mistuning and
cracks is shown to have important effects. Also, the proposed approach is shown to provide
accurate predictions for the overall blisk while requiring computations using single-sector
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models only. The influence of various parameters on the accuracy of the reduced order mod-
els is investigated. Overall, the results show a very good agreement between full finite element
analyses and the proposed reduced order modeling approach.

2.10 Detection of Cracks in Mistuned Bladed Disks using Reduced Order Models and Vi-
bration Data

In this work, a novel methodology to detect the presence of a crack and to predict the non-
linear forced response of mistuned turbine engine rotors with a cracked blade and mistuning
is developed. The combined effects of the crack and mistuning are modeled. First, a hybrid-
interface method based on component mode synthesis is employed to develop reduced order
models (ROMs) of the tuned system with a cracked blade. Constraint modes are added to
model the displacements due to the intermittent contact between the crack surfaces. The
degrees of freedom (DOFs) on the crack surfaces are retained as active DOFs so that the
physical forces due to the contact/interaction (in the three-dimensional space) can be accu-
rately modeled. Next, the presence of mistuning in the tuned system with a cracked blade
is modeled. Component mode mistuning is used to account for mistuning present in the
un-cracked blades while the cracked blade is considered as a reference (with no mistuning).
Next, the resulting (reduced-order) nonlinear equations of motion are solved by applying an
alternating frequency/time-domain method. Using these efficient ROMs in a forced response
analysis, it is found that the new modeling approach provides significant computational cost
savings, while ensuring good accuracy relative to full-order finite element analyses. Further-
more, the effects of the cracked blade on the mistuned system are investigated, and used to
detect statistically the presence of a crack and to identify which blade of a full bladed disk
is cracked. In particular, it is shown that cracks can be distinguished from mistuning.

2.11 Reduced Order Models for Blade-to-Blade Damping Variability in Mistuned Blisks

In this work, a novel reduced order modeling methodology to capture blade-to-blade vari-
ability in damping in blisks is developed. This new approach generalizes the concept of
component mode mistuning (CMM) which was developed to capture stiffness and mass mis-
tuning (and did not include variability in damping amongst the blades). This work focuses
on modeling large variability in damping. Such variability is significant in many applica-
tions, and particularly important for modeling damping coatings. The damping in each of
the blades is assumed to be structural at the blade level. However, variability in the damping
coefficients of the blades means that the damping is not structural at the system (entire blisk)
level. Similar to the CMM based studies, structural damping is used to capture the damping
effects due to the mechanical energy dissipation caused by internal friction within the blade
material. The steady state harmonic responses of the blades are obtained using the novel re-
duced order modeling methodology, and are validated by comparison with simulation results
obtained using a full order model in ANSYS. The effects of damping mistuning are studied
statistically through Monte-Carlo simulations. For this purpose, the blisk model is subjected
to multiple traveling wave excitations. The uncertainty in the various mechanisms responsi-
ble for dissipation of energy and the uncontrollability of these dissipation mechanisms makes
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it difficult to assign a reliable value for the loss factor of each blade. Hence, large variations
(up to ±80%) in the structural damping coefficients of the blades are simulated.

3 FINDINGS

3.1 Fluid-Structural Coupling Effects on the Dynamics of Mistuned Bladed Disks

In this study, the effects of aerodynamic coupling on the vibration response of bladed disks
were investigated. An iterative method using the tuned system modes to calculate the aero-
dynamic coupling was developed. The results were compared with structure-only results and
the results using the blade-alone normal modes. A bladed disk and aeroelastic configuration
which exhibits relatively strong aerodynamic coupling was found in the case study herein.
Also, the aerodynamic stiffness forces are strongly sensitive to interblade phase angle for the
bladed disk studied.

For the case studied, it was shown that aeroelastic coupling may change the tuned and
mistuned forced responses. Also, the statistical 95 percentile response levels are affected
significantly by aerodynamic forces. Furthermore, the mistuned mode shapes change when
aeroelastic coupling is introduced.

Mistuned mode crossing patterns are different for the results using the blade and system mode
methods for the cases studied. Also, the one-step and converged aeroelastic coupling using the
system mode methods yield similar results for the cases studied. However, when aeroelastic
eigenvalues and mode shapes are of critical interest, multiple iterations and converged results
should be used.

The constraint modes are necessary for obtaining accurate results when using the blade
mode method for the case studied. However, the large number of constraint modes makes
the computation time much larger than that of using the system mode method. Detailed
results are presented in Section 5.

3.2 Convergence Predictions for Aeroelastic Calculations of Tuned and Mistuned Bladed
Disks

A hybrid technique has been proposed to predict the convergence error of the aeroelastic
calculation for mistuned bladed disks. The dependence of the aerodynamic forces on vibra-
tion frequencies has been approximated linearly by proposing an aero ratio based on two
aerodynamic gradient matrices. Several other critical ratios have been defined to study their
effects on the convergence error. Matrices randomly generated according to these critical
ratios, as well as the exact matrices of an actual model, can be used in this hybrid technique.
The hybrid technique has been validated using the exact matrices calculated for an actual
industrial bladed disk. Monte Carlo simulations for general mistuned systems and tuned sys-
tems have been performed, and several conclusions have been obtained for the bladed disk
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studied.

First, the aero ratio rA and the gradient ratio rG (details can be found in Section 6) have
significant effects on the convergence error. For a system with both large rA and rG, an
iterative calculation is likely to be unable to converge.

Second, the mistuned aeroelastic calculation is harder to converge than the corresponding
tuned calculation. When the mistuning level is small, increases in the mistuning ratio rM
make the system harder to converge. While the mistuning level is large, the convergence error
decreases slowly when rM grows. In general, rM has a moderate effect on the convergence
error.

Third, a smaller veering ratio rV or a smaller frequency ratio rF makes the system harder
to converge. However, the effect is relatively small. Finally, the structural damping γ has no
significant effect on the convergence error. Detailed results are presented in Section 6.

3.3 Estimation and Veering Analysis of Nonlinear Resonant Frequencies of Cracked Plates

In this study, the linear and nonlinear vibration response of a cracked cantilevered rectan-
gular plate have been investigated. In particular, the veering phenomena for the natural
frequencies of the cracked plate were investigated. It was observed that veerings appear in
plots of natural frequencies versus crack length or crack location ratio. It was shown that a
wider veering region entails continuous interchanging between the modes, whereas a smaller
veering (or crossing) region shows fast mode switching. Then, the nonlinear vibration re-
sponse of the cracked plate due to contact of the crack surfaces was considered. A hybrid
frequency/time-domain (HFT) method was applied to the calculation of nonlinear resonant
frequencies in representative veering/crossing regions. It was shown that the characteristics of
veerings/crossings are affected to some extentby the nonlinearity induced by the crack closing
effect, although in general they are similar to those of the linear counterparts. Furthermore,
an alternative method for estimating the nonlinear resonant frequencies was proposed by
generalizing the bilinear frequency approximation. The results of the proposed method were
validated with the resonant frequencies obtained by the nonlinear forced response analysis
for three typical veering scenarios. Moreover, it was shown that the method works even for
relatively large crack length ratio. Detailed results are presented in Section 7.

3.4 An Efficient Reduced Order Modeling Technique for Nonlinear Vibration Analysis of
Structures with Intermittent Contact

In this study, a novel reduced order modeling framework for the nonlinear vibration analysis
of elastic structures with intermittent contact was proposed. In Section 8.2, the modeling
framework was developed based on a method of component mode synthesis. The master DOF
selection scheme for Guyan reduction was formulated by considering the close relationship
between the optimal master DOF selection and the optimal constraint locations for maximiz-
ing the fundamental frequency. The method is a combination of the sequential elimination
method proposed by Henshell and Ong, and appropriate coordinate transformations to the

13



reduced order model. Another method for choosing the nodes was also introduced for the sake
of comparative study, which is based on a method to optimally choose the measurement loca-
tions such that the measured mode becomes as linearly independent as possible. The method
was then applied to a representative finite element model in Section 8.3. In Section 8.3.1,
the methods were applied to a cracked plate model. Using the selected node patterns, forced
response analysis was carried out to see the effects of the selection patterns on the frequency
response. Furthermore the resonant frequencies were calculated by the application of bilin-
ear frequency approximation. It was confirmed that the selected DOF resulted in accurate
prediction of nonlinear resonant frequencies in comparison to the benchmark case of using
all DOF on the crack surfaces. Moreover, a posteriori accuracy assessment procedure was
introduced by examining the amount of penetration on the crack surfaces during a vibration
cycle. For the methods examined, the node patterns selected using the proposed new method
consistently showed the best results.

3.5 Node Sampling for Nonlinear Vibration Analysis of Structures with Intermittent Con-
tact

In this study, a novel node sampling methodology for the nonlinear vibration analysis of elas-
tic structures with intermittent contact was proposed. In Section 9.2, the modeling framework
was developed based on component mode synthesis. The master DOF selection scheme for
Guyan reduction was formulated by considering the close relationship between the optimal
master DOF selection and the optimal constraint locations for maximizing the fundamen-
tal natural frequency. The method is a combination of the sequential elimination method
proposed by Henshell and Ong and coordinate transformations to the reduced order model.
Another method for choosing the nodes was also introduced for a comparative study. The
alternate method is based on an approach to optimally choose measurement locations such
that the truncated/measured modes become as linearly independent as possible. The method
was then applied to a representative finite element model in Section 9.3. In Section 9.3.1,
the methods were applied to a cracked plate model. Using the selected node patterns, forced
response analysis was carried out to evaluate the effects of the selection patterns on the fre-
quency response. Furthermore, the resonant frequencies were calculated by the application
of bilinear frequency approximation. It was confirmed that the selected DOF resulted in ac-
curate predictions of nonlinear resonant frequencies in comparison to the benchmark case of
using all DOF on the crack surfaces. Furthermore, it was demonstrated that the method also
achieves a significant reduction in CPU time for the nonlinear forced response calculations,
without sacrificing the accuracy in the predicted forced response. Moreover, a method for a
posteriori accuracy assessment was introduced by examining the amount of penetration on
the crack surfaces during a vibration cycle. In Section 9.3.2, the method was also applied
to a cracked blade model with a much larger number of DOF on the crack faces. The node
selection patterns as well as the errors in the bilinear frequencies conform to the results in
the example in Section 9.3.1. For the methods examined, the node patterns selected using
the proposed new method consistently showed the best results.

Based on these results, the essential findings and contributions of this study can be summa-
rized as follows.
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(1) It was shown mathematically that the selection of the nodes where the nonlinear bound-
ary conditions should be applied for vibration problems with intermittent contact is
closely related to the problem of maximizing the fundamental natural frequency of FE
models by fixing some of the nodes.

(2) The maximization problem can be (approximately) solved by the Henshell & Ong
method in conjunction with the CMS method.

(3) For simplified yet representative example models, the proposed method produced nodes
that give accurate forced response predictions and nonlinear resonant frequencies when
the nonlinear boundary conditions are applied on the selected nodes.

(4) A posteriori accuracy assessment using numerical examples showed that the forced
response analyses with the proposed method retain the largest impulse at the crack
surfaces for the frequency ranges of interest

It should also be noted that the proposed method is independent of the geometry of the
contact surfaces. That is because the selection procedure is solely dependent on the mass and
stiffness of the structure. Therefore, for instance, even if there are distortions of the contact
surfaces, the proposed method still works as long as the effects due to the distortions are
reflected in the FE mass and stiffness matrices. In contrast, the limitation of the proposed
approach is that the geometry of the contact surface has to be known a priori, and the
domain of contact surfaces is assumed to remain unchanged during the vibration. That
is, if the vibration problems of interest involve dynamic (fast) crack propagation, then the
nodes selected by the proposed approach at some time instant might not necessarily be the
optimal selection for the entire time duration of interest. However, this is not a problem if
the contact problem of interest does not involve fast changes in the contact regions, such
as the ones involving gap contact between mechanical components. In addition, local effects
on the contact surfaces, such as variations in the grain size on the crack surfaces, were not
considered in this study. These important issues are far beyond the scope of this study.
However, the authors believe that the contributions of this study shall contribute to further
expand the capabilities of model-based vibration analyses involving intermittent contact.
Detailed results are presented in Section 9.

3.6 Bilinear Modal Representations for Reduced-Order Modeling of Localized Piecewise-
linear Oscillators

A bi-linear modal representation of (localized) piecewise linear oscillators has been devel-
oped. First, the mathematical formulation for constructing reduced order models of piecewise
linear oscillator with linear projection was developed in Section 10.1. Second, proper orthog-
onal decomposition of forced response results was examined using a vibration problem of a
cracked plate, and a few key properties of the POMs were investigated (see Section 10.2).
In particular, it was observed that the most dominant POM resembles the linear normal
mode in the frequency range of interest, and the POMs can yield a compact ROM. More
importantly, forced response analyses using the POMs revealed that capturing the local de-
formations near the discontinuous region is important for accurately predicting the nonlinear
forced response. Several novel bi-linear modal representations of POMs were then proposed
in Section 10.3 based on the observations on the POMs discussed in Section 10.2. Namely,
it was shown that the most dominant POM can be well approximated by the corresponding
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linear normal mode, and the POMs showing the local deformations can be represented by
linear combinations of BLMs. To circumvent the difficulty in choosing the most adequate
set of BLMs, BLM selection criteria using angle-based metrics have been proposed. In Sec-
tion 10.4, the applicability of the proposed method including the BLM selection criteria, was
investigated using case studies of a cracked plate and a delaminated plate. It was demon-
strated that the proposed BLM representation successfully produces low-dimensional ROMs
which accurately capture the vibration response of (localized) piecewise linear oscillators.

The proposed methods were applied to specific systems, such as the cracked plate and the
delaminated plate. These systems exhibit complex behavior which was accurately captured
by the proposed methodology. Hence, it is expected that the novel methods can be success-
fully applied to a broad category of systems with localized or piecewise-linear nonlinearity.
Detailed results are presented in Section 10.

3.7 Reduced-Order-Modeling for Nonlinear Analysis of Cracked Mistuned Multi-Stage Bladed
Disk Systems

A novel modeling methodology for combining single stage models (of different types) was
introduced. The methodology was used to create reduced order models (ROMs) that combine
a model of a single stage with a crack with a model of another single stage containing
small blade-to-blade mistuning. The full order model of the stage with a crack was reduced
using component mode synthesis (CMS), while the mistuned stage was reduced using cyclic-
symmetry analysis, CMS, and component mode mistuning (CMM). The novel methodology
enabled combining these two single stage ROMs with different modeling frameworks. The
two stages were assembled by projecting the motion at the interface of the neighboring stages
along a set of harmonic basis functions.

The results presented demonstrate the interaction between multi-stage effects and cracked-
blade effects on the response of the overall system. It was demonstrated that performing
a multi-stage analysis (as opposed to one single-stage analysis for each individual stage) is
very important in certain frequency ranges for realistic industrial blades. It was also shown
that, although the nonlinear forced response of a system with a cracked blade is bounded by
the linear forced response of the system with a cracked blade and the response of a system
without a cracked blade, this range can be very large and only through a nonlinear analysis
can the true response be predicted. Detailed results are presented in Section 11.

3.8 A Statistical Characterization of the Effects of Mistuning in Multi-Stage Bladed Disks

A novel methodology was used to generate multi-stage reduced order models (ROMs) that
requires only single sector full order models. This efficient methodology reduces the individ-
ual stages using a combination of component mode synthesis, component mode mistuning
and cyclic symmetry analysis. The synthesis of the multi-stage ROM was completed in the
reduced coordinates by projecting the motion along the interface between stages onto a set of
harmonic basis functions and then enforcing geometric compatibility. The methodology was
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applied to a two stage system to create a variety of ROMs and conduct statistical analyses.
Additionally, a new classification scheme was developed for categorizing modes of multi-stage
bladed disk systems. The classification scheme is based on sorting modes based on the energy
distribution between the stages and the alignment of modes of the multi-stage system with
modes from single stage systems.

Several conclusions can be drawn from this work. First, narrow frequency ranges can exist
where single stage analyses are valid for tuned multi-stage systems. However, when consider-
ing mistuning, the modes in these frequency ranges often no longer match their single stage
counterparts, thus significantly changing the forced response predictions although the energy
does remain contained to the corresponding single stage. Additionally, outside of these nar-
row frequency ranges, multi-stage analyses are always required because multi-stage modes
exist and therefore, a single stage analysis will be very inaccurate. Mistuning in multi-stage
systems creates even more complex dynamics that need to be analyzed in a probabilistic
manner. Therefore, many mistuning patterns need to be generated and efficient ROMs for
performing calculations for the multi-stage system are critical. Also, it was observed that
as the mistuning level is increased it has an increasing impact (increasing the amplification
factor and decreasing the modal alignment). However, the influence levels off at approxi-
mately 5% standard deviation in the mistuning level for the two stage blisk investigated in
this work.Detailed results are presented in Section 12.

3.9 Reduced-Order Models of Mistuned Cracked Bladed Disks

New reduced-order models (ROMs) for mistuned systems with cracked blades have been
developed by treating the system as a combination of a tuned-system component (X), a
relative component (Xr), and virtual blade mistuning components (CMM). The X-Xr-CMM
approach has a number of attractive features.

(1) The input data needed to construct accurate ROMs are relatively easy to generate.
Only a finite element analysis of a sector with a cracked blade, a sector with a tuned
blade, and a cantilevered blade are required. All input data can be expressed in terms of
single-sector quantities, which minimizes computer memory and computational costs.

(2) The transformation from usual physical coordinates to X- Xr coordinates is easily im-
plemented by performing a simple linear transformation of the DOFs in the crack area.
Using this approach, the usual tuned system model is obtained by simply deleting from
the system matrices the elements corresponding to the relative DOFs.

(3) The fixed-interface method used for the X-Xr model reduction converges quickly, and it
employs only tuned system normal modes and constraint modes to represent the cracked
system normal modes. Note that the use of relative coordinates has been observed to
provide good convergence in the past. However, in contrast with the proposed method,
in that work a standard CMS was use to model mistuning, and hence constructing
ROMs required the used of full system matrices. Also, in that work, the bladed disk
was partitioned differently than in this current approach.

(4) The complexity of using system level information in the process of constructing the
proposed ROMs is avoided. That is possible because the constraint modes are nonzero
only in the sector with the cracked blade and approximately zero everywhere else.
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(5) Both small and large mistuning may easily be added to the X-Xr model by a vari-
ety of approaches. Herein, we focused on CMM. However, other mistuning projection
techniques can be used as well. In particular, since mistuning is added only in the pris-
tine/uncracked blades, the CMM method is one of the easiest methods to apply. Using
this method, the mistuning projection is performed using the modal participation fac-
tors of cantilevered blade modes.

(6) The proposed method can handle multiple cracks and large cracks. A key idea to accom-
plish this is the use of a modified Craig-Bampton CMS method which was introduced
and shown to provide excellent results.

(7) The X-Xr-CMM approach provides excellent accuracy. The approach was validated
using an industrial turbo machinery blisk with a complex/realistic geometry and small
as well as large cracks.

(8) The estimated natural frequencies of the system with a cracked blade was shown to
converge rapidly as the selected number of tuned system normal modes is increased.
This feature ensures that the models obtained are small yet accurate.

(9) The proposed approach is very efficient computationally. Predictions from X-Xr-CMM
reduction and full finite element models were compared. The proposed approach was
shown to provide large computational savings. For exemple, the mistuned finite element
model with a cracked blade had 159,603 DOFs, whereas the reduced order model had
330 DOFs with the same accuracy.

(10) Only sector level analyses and sector level information is needed to construct system
level ROMs for full, cracked and mistuned bladed disks and blisks. That contrasts pre-
vious work where the full order constraint modes were needed in part because of the
particularities of the partitions used there. Those partitions were needed to account for
mistuning. In the proposed approach, mistuning is modeled by CMM, and a disadvan-
tageous partition of the blisk is no longer needed.

3.10 Detection of Cracks in Mistuned Bladed Disks using Reduced Order Models and Vi-
bration Data

An efficient and novel methodology to investigate the nonlinear forced response of mistuned
bladed disks with a cracked blade has been developed. Efficient ROMs were developed from
hybrid CMS and CMM. The forced response of the mistuned bladed disk with a cracked blade
was obtained by using the proposed models and nonlinear time integration. The results were
compared to those of a previous method. It was shown that blade mistuning can be projected
efficiently to reduce the computational cost. This advantage plays an important role when
computing system normal modes of a mistuned bladed disk is needed for many mistuning
patterns. By investigating mode localizations due to cracks and mistuning, it was shown that
cracks lead to mode localization which is different from localization due to mistuning. Also
it was shown that cracks are distinguishable from mistuning by using the residuals of mode
shapes of the mistuned bladed disk with a cracked blade relative to the mode shapes of the
bladed disk without a crack. Furthermore, it was shown that the cracked blade is detectable
statistically even in the presence of measurement noise and even when the nonlinearity due
to the crack is not negligible.
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3.11 Reduced Order Models for Blade-to-Blade Damping Variability in Mistuned Blisks

Novel ROMs were developed to model damping mistuning. The damping in the blades was
modeled as structural damping. The use of structural damping in general has been validated
in a variety of publications and in particular by the analysis and validation of the CMM
approach. This paper presents an extension to those studies, where damping was considered
structural at a system level (and hence damping mistuning was ignored). The damping
coefficients were considered distinct for each blade. This means that the damping is structural
only at the blade level. When all the individual blade damping matrices are assembled
together, the global structural damping matrix cannot be defined using one scalar value.
Thus, the damping in the blisk as a whole cannot be defined as structural damping. A
single structural damping coefficient (scalar value) was used to characterize damping in each
blade in a frequency range of interest. Variation in damping within a single blade was not
considered. If a real system exhibits damping which does not closely follow the assumptions
of structural damping, then one alternate approach (used in the past) is to define different
damping coefficients in different frequency ranges. The method proposed can be used in a
similar fashion. Note that in various frequency ranges, the structural damping coefficients
do not have to be the same values for each blade. Hence, the damping mistuning does not
have to be the same in all frequency ranges. Thus, the methodology presented here is not
limited to characterizing damping with a single scalar for all frequencies.

A FEM of a blisk was used to validate the novel ROMs. A maximum error of 0.3% between
the amplitudes predicted by a ROM and the FEM was found for the case where only damping
mistuning is present. When stiffness mistuning was included along with damping mistuning,
a maximum error of 0.007% was obtained for the estimates of the resonant frequencies, and a
maximum error of 4% for the amplitude of the resonant response. These errors are consistent
with the errors obtained using CMM (i.e. with no damping mistuning). They are caused by
the various approximations in CMM. Moreover, the novel ROMs are very simple to use and
mathematically similar to CMM. The similarity comes from the fact that the equations for
the ROM are alike. Thus, the novel ROMs can be very easily generalized and used to model
not only damping mistuning, but also stiffness mistuning. The novel method developed adds
to CMM the ability to model damping mistuning.

The computational efficiency of the new methodology enables the fast simulation of huge
numbers of damping mistuning cases. The novel ROM was thus used to perform a statis-
tical analysis to characterize the effects of random damping mistuning patterns. The blade
amplification factors were calculated for many mistuning patterns with different standard
deviations. The results show that for all random damping mistuning patterns with the same
standard deviation, a random distribution of blade amplification factors can be obtained.
As the standard deviation of the mistuning increases, the median, mean and the standard
deviation of the distribution of the blade amplification factors also increases. This is true in
general for all the engine order excitations. There is, however, no strong correlation between
the engine order and the distribution of the blade amplification factors. Note that, such a
statistical analysis can be helpful to determine the probability of the occurrence of certain
blade amplification factors if the standard deviation of the mistuning pattern is known.
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4 BENEFITS AND IMPACT

The novel modeling methodologies that capture nonlinear, aeroelastic, multistage, and local-
ization phenomena have a solid potential to impact Air Force and civilian technology. The
conducted research directly supports both established and emerging practices in damage
assessment of aerospace vehicles. The techniques developed will thus help to enable critical
maintenance and repair decisions by the flight line maintenance manager/officer. Further-
more, these techniques will contribute to the reduction of the development time for new air
and space vehicles through increased use of modeling and simulation. Some specific benefits
of the conducted research include:

● Fundamentally new capabilities for predicting the response of rotors with cracked blades,
which make an important impact on increasing operational capabilities and readiness of
Air Force engines and air vehicles;● Novel, advanced techniques for system identification and damage detection in multistage
rotors, which open the door to the next generation of realistic and practical structural
health assessment for both onboard monitoring and offline maintenance inspections;● The necessary fundamental physical insight for the development of advanced design and
monitoring technology for systems in which nonlinear and fluid-structural interactions are
crucial, thus generalizing existing methods that focus on structures and neglect important
fluid-structural phenomena;● More efficient yet higher fidelity predictions of nonlinear vibration response of cracked
structures, which provide a quantum leap for estimating fracture propagation and fatigue
life in complex structural and fluid-structural systems.

Finally, it is noted that the conducted research provides fundamental progress in modeling
of a large class of cracked, aeroelastic structures. The modeling techniques have primarily
been applied to turbine engines, but these new methods have broader applications to health
monitoring and prognosis of the air vehicle as a whole. Therefore, these important contri-
butions enable the Air Force to attain critical risk reduction goals by providing methods to
improve the knowledge of system properties throughout the service life of each engine and
air vehicle.

4.1 Cumulative List of People Involved in the Research

The following people were involved in the proposed research:
B. I. Epureanu, PI
M. P. Castanier, Co-PI
K. D’Souza, Post-Doc
A. Saito, Post-Doc
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C. Jung, Graduate Student
O. Marinescu, Graduate Student
A. Joshi, Graduate Student
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4.2 Cumulative List of Journal Publications Resulting from the Research

The following journal publications resulted from this research:

(1) C. Jung, A. Saito, and B. I. Epureanu: ”Detection of Cracks in Mistuned Bladed Disks
using Reduced Order Models and Vibration Data”, Journal of Vibration and Acoustics,
submitted, 2011.

(2) A. Joshi and B. I. Epureanu: ”Reduced Order Models for Blade-to-Blade Damping
Variability in Mistuned Blisks“, Journal of Vibration and Acoustics, submitted, 2011.

(3) O. Marinescu, B. I. Epureanu, and M. Banu: ”Reduced-Order Models of Mistuned
Cracked Bladed Disk”, Journal of Vibration and Acoustics, to appear, 2011.

(4) A. Saito and B. I. Epureanu: ”Bilinear Modal Representations for Reduced-Order Mod-
eling of Localized Piecewise-linear Oscillators”, Journal of Sound and Vibration, to
appear, 2011.

(5) K. D’Souza, A. Saito, and B. I. Epureanu: ”Reduced Order Modeling for Nonlinear
Analysis of Cracked Mistuned Multi-Stage Bladed Disk Systems”, AIAA Journal, sub-
mitted, 2010.

(6) K. D’Souza and B. I. Epureanu: ”A Statistical Characterization of the Effects of Mis-
tuning in Multi-Stage Bladed Disks”, Journal of Turbomachinery, submitted, 2010.

(7) A. Saito, B. I. Epureanu, M. P. Castanier, and C. Pierre: ”Node Sampling for Nonlinear
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pp. 1903-1915, 2010.

(8) A. Saito, M. P. Castanier, and C. Pierre, ”Estimation and Veering Analysis of Nonlinear
Resonant Frequencies of Cracked Plate”, Journal of Sound and Vibration, Vol. 326(3-5),
pp.725-739, 2009.

(9) Z. He, B. I. Epureanu, and C. Pierre: ”Convergence Predictions for Aeroelastic Calcu-
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Reducing vibrations, and in particular the resonant forced response of bladed disks, is an
important concern for the turbomachinery industry. Cyclic symmetry is a convenient as-
sumption for the analysis of (tuned) bladed disks. However, cyclic symmetry does not hold
for mistuned disks which exhibit small differences among sectors. Mistuning is unavoidable
in practice due to manufacturing tolerances and in-service wear and tear, and can cause a
drastic increase of the forced response. Hence, the effects of mistuning on the vibration of
turbomachinery rotors have been extensively investigated (e.g. Tobias and Arnold1).

In early work, simplified models with only several degrees of freedom (DOF) were used to
study the dynamics of mistuned bladed disks.2–4 While such simplified models, like lumped
parameter models, are convenient and insightful to investigate the effects of major system
parameters (such as mistuning, structural and aerodynamic coupling), they are not accurate
enough to study real/practical bladed disks. Models based on the finite element method
(FEM) can represent the actual bladed disks accurately. However, the large number of DOF
(usually several millions) of the FEM models makes the computation time practically not
affordable. Hence, different reduced order models (ROM) have been developed.5–12 Current
high fidelity structural models reduce the computation time greatly compared to the original
FEM model. Moreover, various fluid dynamic models have been developed to calculate with
high speed the unsteady pressure on the blades13–17 by (usually) assuming linearity of the
unsteady pressure with respect to the displacements of the blades.

Severe mode localization and excessive vibration amplitude of bladed disks are major detri-
mental effects of mistuning. Previous work has shown that interblade structural coupling is
a critical factor affecting the dynamics of mistuned bladed disks. In operating conditions,
bladed disks are always interacting with flows, and hence, bladed disks exhibit both struc-
tural and aerodynamical coupling. Thus, aeroelastic calculations are necessary for accurate
predictions. Although compact and accurate structural reduced order models have been de-
veloped, only a few studies of the dynamics of mistuned bladed disks have been conducted
with considerations of aerodynamic forces. Traditionally, the aerodynamic stiffness matrix
was calculated using the blade normal modes with/without constraint modes. For exam-
ple, Kaza and Kielb18,19 used a beam structural model and a two-dimensional aerodynamic
model to study the vibrations and flutter of mistuned bladed disks. Pierre and Murthy20 and
Pierre et al.21 developed a perturbation method to investigate the aeroelastic mode local-
ization and eigenstructure transformations. Sadeghi and Liu22 studied the phase mistuning
and frequency mistuning effects on two-dimensional cascade flutter. Gerolymos23 calculated
the tuned aeroelastic modes using an iterative process over frequency dependent unsteady
aerodynamic forces for a shroud-less bladed disk. Moyroud et al.24 developed a similar itera-
tion process using different structural and aerodynamic computer codes, and calculated the
aeroelastic tuned eigenvalues for bladed disks with and without shrouds. In these latter two
methods,23,24 the aerodynamic code used the tuned system modes to calculate the unsteady
aerodynamic forces. During the iterative process, Gerolymos23 used a mode modification
technique to update the new eigenvalues and eigenvectors, and Moyroud et al.24 solved the
eigenvalue problem directly. Seinturier et al.25 adopted the structural model developed by
Bladh et al.6,7 to calculate the forced response of mistuned bladed disks. Because that struc-
tural model is sub-structured into blade and disk components, cantilever-blade normal modes
and constraint modes were used to calculate the unsteady aerodynamic forces.25 The con-
straint modes are obtained by enforcing unit displacements on interface DOF successively.
Kielb et al.26,27 used the fundamental mistuning model (FMM) developed by Feiner and
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Fig. 1. Sub-structuring of a mistuned bladed disk.

Griffin11 to investigate the flutter and forced response problems of mistuned bladed disks.
Although FMM uses the tuned system modes as the modal basis, cantilever-blade normal
modes are still used to calculate the unsteady aerodynamic forces.26,27 Distinct from these
previous studies, the current paper discusses a new method to incorporate the aerodynamic
coupling into a high fidelity structural reduced order model by using the tuned system modes
directly to calculate the unsteady aerodynamic stiffness matrix, and by employing iterations
over the eigenvalues of the system to obtain accurate results. A new fluid-structure cou-
pling method in the modal space is developed to incorporate the aerodynamic effects into a
compact and accurate ROM. The component mode mistuning (CMM) method8 is used for
the structural model, and a quasi-3D unsteady aerodynamic code is employed to calculate
the unsteady aerodynamic forces. Traditionally, the cantilever-blade normal modes (and the
constraint modes) have been used to calculate the aerodynamic stiffness matrix.20,21,25–27

However, in the CMM model, the tuned system modes are used as the modal basis. Herein,
the tuned system modes are used to calculated the aerodynamic stiffness matrix iteratively
over the eigenvalues of the system. The results using the traditional method and the new
method are compared. It is found that, for the case studied, there are notable differences
between the results using the new model and the traditional method with cantilever-blade
normal modes only. To achieve accurate results, constraint modes are necessary. However,
the inclusion of constraint modes in the aerodynamic calculation increases significantly the
computation time compared to using the tuned system modes directly.

This paper is organized as follows. In the next two sections, the CMM structural model
and the quasi-3D aerodynamic model are introduced. The methods to incorporate the aero-
dynamic coupling into the CMM model using the cantilever-blade normal modes and the
tuned system modes are presented in the following section. The two methods are applied to
an industrial rotor. Results and discussions are presented in the following section. Finally,
the last section summarizes the conclusions of this work.
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5.1 Structural Reduced Order Model

The common method for bladed disks is to conduct FEM analysis for only one sector based
on cyclic symmetry. However, when the cyclic symmetry is destroyed by mistuning, the
analysis of the whole model is needed if FEM method is employed. Herein, an efficient
and precise reduced order modeling method developed by Lim et al.8 for mistuned bladed
disks is used. A group of tuned system modes are used as the modal space of the whole
(mistuned) system. The major advantage of this reduced order model is the projection of the
deviation of cantilever blade stiffness onto the tuned system modal space. For Brevity, only
the synthesized equations in the reduced modal space are presented here. The details of the
reduced order model can be found in the original paper (by Lim et al.8). The hybrid-interface
component mode synthesis (CMS) method is employed in this model. As shown in Fig. 1,
the mistuned bladed disk is partitioned into two components: a free-interface component
(the tuned bladed disk) and a fixed-interface component (the blade mistuning). The fixed-
interface component is a virtual component instead of a physical component because it
is the difference between the mistuned system and the nominal tuned system. Under the
assumption that the mistuned modes for a system with small mistuning can be captured by
the tuned system modes alone when the tuned system modes have close frequencies (within
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a small range8–10), the ROM can be constructed by using only the tuned system modes
(which are obtained by conducting cyclic symmetry analysis of one sector). The synthesized
equations for the eigenvalue problem and (separately) the forced response problem can be
expressed as8

[(1 + jγ)Ksyn +Ka − ω2Msyn]qS
φ =0, (1)[(1 + jγ)Ksyn +Ka − ω2Msyn]qS
φ =ΦS,0

Γ

∗
f , (2)

where matrices Msyn and Ksyn are given by

Msyn = I +ΦS,0
Γ

∗
δMΦS,0

Γ ,

Ksyn =Λ +ΦS,0
Γ

∗
δKΦS,0

Γ ,

with δM and δK denoting the physical mistuned mass and stiffness matrices.

5.2 Frequency Domain Unsteady Aerodynamic Model

A quasi-three dimensional model of a cascade operating in an inviscid, irrotational and isen-
tropic flow is employed based on the full-potential equation using a Galerkin formulation13

and by considering the variation of stream tube heights.28 Consider the flow between two
neighboring stream surfaces. The velocity vector may be expressed as the gradient of the
scalar velocity potential φ̂. The conservation of mass can be expressed as

∂(ρ̂h)
∂t

+∇ ⋅ (ρ̂∇φ̂h) = 0, (3)
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Fig. 4. Eigenvalues of the 1T system modes with structural damping γ of 0.001. The eigenvalue λ
is related to ω by λ = jω.

where ˆ denotes the full solution, including steady and unsteady components, ρ̂ is the density
of the fluid, and h is the height of the stream tube. For an isentropic flow, the density and
the pressure can be expressed as

ρ̂ = ρT {1 − γc − 1
C2

T

[1
2
(∇φ̂)2 + ∂φ̂

∂t
]} 1

γc−1

,

p̂ = pT {1 − γc − 1
C2

T

[1
2
(∇φ̂)2 + ∂φ̂

∂t
]} γc

γc−1

,

where p̂ is the (complete steady and unsteady) pressure. Eq. (3) can be transformed by
applying a variational principle.13,29 Namely, the velocity potential, which satisfies Eq. (3)
in a simple-connected domain D, renders extremum of the functional Π given by

Π = 1

T ∫T ∫ ∫
D
p̂hdxdydt + 1

T ∫T ∮ Q̂φ̂hdsdt,

where Q̂ is the prescribed mass flux on the boundary.

The steady flow in each stream tube is calculated first. Then, the unsteady flow is linearized
about the steady flow under the assumption that the unsteady flow induced by the motion
of the blades is a small perturbation to the steady flow. Only one passage between two
neighboring blades is solved by assuming that the flow is periodic along the circumferential
direction. Hence, the velocity potential can be expressed as the sum of a steady potential Φ
and the real part of an unsteady periodic potential φ, i.e. φ̂(x, y, t) = Φ(x, y)+R[φ(x, y)ejωt],
with φ≪ Φ and R denoting the real part.
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(d) Blade Mode Results
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(e) One-Step Results
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Fig. 5. 4-th and 5-th mistuned mode shape amplitudes in the 1T frequency range for mistuning
pattern δen.

5.3 Fluid-Structure Coupling Models

5.3.1 Fluid-Structure Coupling Using Blade Modes

In previous work (Lim et al.8), the stiffness mistuning projection is implemented by using
the following modal transformation

ΦS,0
Γ = I⊗ [ΦCBΨCB] ⎡⎢⎢⎢⎢⎢⎣

qCB
φ

qCB
ψ

⎤⎥⎥⎥⎥⎥⎦ = (I⊗UCB)qCB, (4)

where ⊗ denotes the Kronecker product,30 and

UCB = [ΦCB ΨCB ] ,
(qCB)∗ = [ (qCB

φ )∗ (qCB
ψ )∗ ] .

The constraint modes are obtained by enforcing unit displacements on each DOF at the
interface successively, while keeping other DOFs at the interface free. The purpose of ΨCB

is to describe the displacements at the boundaries between components of the bladed disk,
such as blade-disk boundary and shroud-to-shroud boundary.

The projection used in Eq. (4) can be used to calculate the aerodynamic stiffness matrix Ka

also. First, the aerodynamic stiffness coupling coefficients in the complex cyclic constraint
and cantilever-blade normal modal coordinates Ã are calculated. The modal transformation
between Ã and the aerodynamic stiffness coupling coefficients in the physical coordinates A
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can be expressed as8

Ã = (I⊗UCB∗) (E∗ ⊗ I)A (E⊗ I) (I⊗UCB)
(5)= (E∗ ⊗ I) (I⊗UCB∗)A (I⊗UCB) (E⊗ I) .

Therefore, the aerodynamic stiffness coupling matrix in the tuned structure-only system
modal coordinates can be expressed (using Eqns. 4 and 5) in the following form

Ka =ΦS,0
Γ

∗
AΦS,0

Γ=qCB∗ (I⊗UCB∗)A (I⊗UCB)qCB (6)=qCB∗ (E⊗ I) Ã (E∗ ⊗ I)qCB.

For every mode shape UCB
m (i.e. for every column m of UCB, the unsteady pressure distribu-

tion on the blade pCB
m,i is calculated for every interblade phase angle σi of index i, which is

given by σi = 2πi/NB, (for i = 0,1, . . . ,NB − 1), where NB is the number of blades. Note that
σi and σNB+i correspond to the same interblade phase angle. Hence, Ã is a block diagonal
matrix where each block relates to a specific interblade phase angle index, and

Ã =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã0

Ã1

⋱
ÃNB−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

The elements Ãi
mn of the diagonal block Ãi can be obtained by integrating the dot product

of the m-th mode UCB
m with the n-th corresponding force, in the direction of the local normal

n as follows
Ãi
mn = ∫

A
UCB
m
∗ ⋅ pCB

n,indA, m,n = 1,2, . . . ,NU , (8)

where NU is the number of modes in UCB
m . The number of constraint modes are usually

much larger than the number of cantilever-blade normal modes retained in UCB
m . Hence, for

bladed disks without shrouds, the constraint modes are usually neglected.8 In this scenario,
the dimension of Ãi

mn in Eq. (8) is the number of cantilevered-blade modes selected NCB,
and the modal transformations shown in Eqns. 4, 5 and 6 successively become8

ΦS,0
Γ = (I⊗ΦCB)qCB

φ , (9)

Ã = (I⊗ΦCB∗) (E∗ ⊗ I)A (E⊗ I) (I⊗ΦCB)
(10)= (E∗ ⊗ I) (I⊗ΦCB∗)A (I⊗ΦCB) (E⊗ I) ,

Ka =ΦS,0
Γ

∗
AΦS,0

Γ=qCB
φ

∗ (I⊗ΦCB∗)A (I⊗ΦCB)qCB
φ (11)=qCB

φ

∗ (E⊗ I) Ã (E∗ ⊗ I)qCB
φ .
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Blade δen [%] Blade δen [%]

1 5.06 14 2.93

2 2.68 15 -1.67

3 2.30 16 -0.60

4 -3.84 17 -3.65

5 4.27 18 -3.50

6 -2.74 19 0.03

7 -4.29 20 0.15

8 -1.71 21 3.27

9 0.81 22 2.76

10 0.65 23 -0.62

11 1.20 24 -2.06

12 -0.92 25 0.91

13 -3.17 26 -3.65

Table 1
Mistuning pattern in E for the case study rotor.

5.3.2 Fluid-Structure Coupling Using System Modes

A natural other choice for calculating the aerodynamic stiffness matrix is to employ the same
projection as the one used for mistuning, i.e. by using the approach shown above. However,
for the cases where the constraint modes are needed to calculate the aerodynamic stiffness
matrix (e.g. bladed disks with shrouds), the computation time is likely to become formidable
because the unsteady pressure distribution has to be calculated for every constraint mode
and every interblade phase angle index. Moreover, the aerodynamic calculation is sensitive to
the blade motion, and consequently the small errors caused by the modal projection (similar
to the one shown in Eq. (9)) may lead to large errors in the resulting aerodynamic stiff-
ness matrix (expressed in the structure-only tuned system modal coordinates). To overcome
these difficulties, tuned (structure-only) system modes are used directly to calculated the
aerodynamic stiffness matrix. Since these modes are structure-only modes, iterations over
frequencies are needed because the aerodynamic stiffness matrix Ka in Eq. (1) is dependent
on the frequencies. From Eq. (1), the aeroelastic system modes can be expressed as

ΦS,n
Γ,i = NS∑

r=1

QS,n
φ,riΦ

S,0
Γ,r, i = 1,2, . . . ,NS, (12)

or in the matrix form as
ΦS,n

Γ =ΦS,0
Γ QS,n

φ , (13)

where the superscript n denotes results after n steps of iteration, NS is the number of tuned
structure-only system modes used in the component mode mistuning model, and the matrix
QS,n
φ is given by

QS,n
φ = [qS,n

φ,1 qS,n
φ,2 . . . qS,n

φ,NS
] . (14)
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Fig. 6. MAC number between the 3-rd structure-only mistuned mode and the aeroelastic mistuned
modes in the 1T system mode frequency region.

For a tuned system, the aeroelastic modes have constant interblade phase angles, while
no constant interblade phase angle exists in the mistuned aeroelastic modes. However, the
aerodynamic calculation requires periodic boundary conditions. To address this issue and
calculate the converged aerodynamic stiffness matrix, two different methods are proposed:
one for tuned systems and the other for mistuned systems. In the first step of both methods,
structure-only mode shapes and (complex) eigenvalues ω0 are computed. Then, at every iter-
ation step n, the aerodynamic stiffness matrix (expressed in the tuned structure-only modal
coordinates) Ka,n is obtained using the eigenvalues ωn−1 calculated in the previous itera-
tion step, and new eigenvalues ωn are computed using Ka,n. Iterations are performed until
convergence in the aerodynamic stiffness matrix is achieved. This is distinct from classical
flutter calculations where, for example, iterations are needed to determine the flutter speed.
Here, the aeroelastic eigenvalues and eigenmodes for a particular flow condition (which is
before flutter) are of interest. The iterations needed are performed over the eigenvalues (of
un-converged aeroelastic system) because the aerodynamic stiffness matrix is dependent on
these eigenvalues.

5.3.3 Tuned Case

Because every tuned aeroelastic system mode has a specific interblade phase angle, the corre-
sponding unsteady pressure distribution on a blade has the same interblade phase angle also.
Hence, the aerodynamic stiffness matrix in the tuned aeroelastic system modal coordinates
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ÂT,n may be expressed in the form of a block diagonal matrix as

ÂT,n =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÂT,n
0

ÂT,n
1 ⋱

ÂT,n
NB−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

Unlike Eq. (7), the dimensions of the blocks ÂT,n
i in Eq. (15) can be different for different i,

and depend on the number of tuned structure-only system modes used in the CMM model
that relate to the i-th interblade phase angle σi. The aerodynamic stiffness matrix in the
tuned structure-only system modal coordinates Ka,n can be calculated by using the modal
transformation shown in Eq. (13). One obtains

Ka,n = Pn∗ÂT,nPn, (16)

where Pn = (QS,n
φ )−1 is the modal transformation from the tuned aeroelastic system modes

to the tuned structure-only system modes.

5.3.4 Mistuned Case

Because of the linearity of the unsteady aerodynamic model, the unsteady aerodynamic
forces exerted on the blade due to the i-th mistuned aeroelastic system mode ΦS,n

Γ,i can be
expressed as

FS,n
i = NS∑

r=1

QS,n
φ,riF

S,0
i,r , i = 1,2, . . . ,NS. (17)

Note that the mode ΦS,0
i,r is vibrating with the i-th mistuned system natural frequency related

to the force FS,n
i . Hence, the forces FS,0

i,r are different for distinct FS,n
i . The elements of the

aerodynamic stiffness matrix (in the mistuned aeroelastic system modal coordinates) ÂM,n

can be obtained as

ÂM,n
ij =ΦS,n

Γ,i

∗
FS,n
j

= (NS∑
r=1

QS,n
φ,ri

∗
ΦS,0

Γ,r

∗)(NS∑
t=1

QS,n
φ,tjF

S,0
j,t ) (18)

= NS∑
r=1

NS∑
t=1

QS,n
φ,ri

∗
ΦS,0

Γ,r

∗
QS,n
φ,tjF

S,0
j,t .

Due to the orthogonality of eigenvectors with different interblade phase angles, only terms
in which ΦS,0

Γ,r and FS,0
j,t have the same interblade phase angle will be non-zero in Eq. (18).

The aerodynamic stiffness matrix in the tuned structure-only system modal coordinates can
be derived in the same way as Eq. (16). One obtains

Ka,n = Pn∗ÂM,nPn. (19)
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Fig. 7. MAC number between the 10-th converged aeroelastic mistuned mode the mistuned modes
using other methods.

One may note that the tuned system can be calculated using the same method as for the
mistuned system described above, by setting the mistuning to zero. However, each tuned
mode shape ΦS,0

Γ,r is related to NS different frequencies (in Eq. (18)), while every tuned mode

shape ΦS,n
Γ,i is related to only one frequency in the method shown in Eqns. 15 and 16 for the

tuned case. Thus, the method based on Eqns. 15 and 16 saves a large amount of computation
time compared to the method above, but it is valid only for tuned cases.

5.4 Case Study

The structural ROMmodel has been validated by comparing the results with MSC-NASTRAN,8

and the aerodynamic code has been validated by comparing the results with several other
unsteady CFD codes and experiment results16,31,32 for cascade flows. An industrial bladed
disk with 26 sectors shown on the left in Fig. 1 was investigated. The complete FEM model
has 1, 306,500 DOF, and each blade has 21, 582 DOF, with 990 DOF at the interface be-
tween the blade and the disk. The large number of interface DOF makes this case study
challenging because the inclusion of the boundary constraint modes is practically impos-
sible. Fig. 2 shows the natural frequencies versus nodal diameter numbers for the tuned
system. The frequency range from 1300 Hz to 1700 Hz was studied. The frequency range
investigated covers the second group (first torsion: 1T) of system modes. The rotation speed
of interest is determined using the Campbell diagram shown in Fig. 3, and 15 layers are used
for the aerodynamic calculations. The upstream far field steady Mach number near the hub
is 0.4, and the reduced frequency (based on half chord and inlet velocity near the hub) is
approximately 1.45 near the hub. For brevity, the method using the cantilever-blade normal
modes is referred to as the blade mode method. The method using the system modes is
referred to as the system mode method. Finally, the uncoupled and the coupled results using
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(a) 10-th Converged Aeroe-
lastic Mode
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(b) 10-th One-step Aeroelas-
tic Mode
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(c) 11-th One-step Aeroelas-
tic Mode

Fig. 8. Mistuned aeroelastic mode shape amplitudes.

the system mode method are referred to as one-step results and converged results. Small
mistuning of Young’s modulus E of every blade is considered. Tab. 1 shows the employed
mistuning patterns (δen) and the corresponding blades. The standard deviation of δen is 2.7%
and the mean value is close to zero. The structural damping γ is 0.001. The number of
DOF of the CMM model is 28. Finally, 5 cantilever-blade normal modes and 990 blade-disk
boundary constraint modes are used for the mistuning projection, but only the correspond-
ing cantilever-blade normal mode (1T) is used for the aeroelastic calculation in the blade
mode method (where not stated otherwise). As discussed in the following, the bladed disk
studied herein has relatively strong aerodynamic coupling, which may not be the case for a
variety of other blisk operating conditions. Also, a strong sensitivity of aerodynamic forces
to interblade phase angle is observed for the bladed disk studied.

5.4.1 Free Vibration Problem

Fig. 4 shows the tuned and mistuned eigenvalue locus of the 1T system modes of the system
in the complex plane (λ = jω). The imaginary part of an eigenvalue represents frequency,
and the real part represents damping. A positive real part indicates that the damping is
negative and that the system is unstable for the corresponding mode shape. The aeroelastic
eigenvalues are distinct from the structure-only eigenvalues. The aerodynamic coupling is
strong for this case study, as indicated by the fact that the largest aerodynamic damping
value is close to 0.03. Note that the regular pattern of the tuned aeroelastic eigenvalues is
destroyed when mistuning is introduced. Compared to the tuned aeroelastic eigenvalues, the
range of the real part of the mistuned aeroelastic eigenvalues narrows down, and the range
of the imaginary part expands, which means that the mistuned frequencies spread out, and
mistuning stabilizes the system. These results are in agreement with the well known benefi-
cial effect of mistuning on flutter (Pierre and Murthy,20 Pierre et al.21). For most of the tuned
eigenvalues, the one-step results and converged results are almost identical for frequencies,
but show notable differences in damping, which agrees with Gerolymos.23 However, for the
eigenvalue corresponding to the interblade phase angle index 3, the converged result and the
one-step result exhibit significant differences in both frequency and damping (as shown in
Fig. 4). This indicates that for this traveling wave, the dependence of the unsteady aerody-
namic force on the eigenvalue is complex. For the mistuned eigenvalues, the one-step and
converged results show similar differences. The results using the blade mode method are
close to the one-step results, while some of the tuned and mistuned eigenvalues have notable
differences. In the following, a tuned system mode with a positive interblade phase angle
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(a) Structure-only Results
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(c) Structure-only Results
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(d) Aeroelastic Results

Fig. 9. Forced response for engine order 29 excitation in the 1T system mode frequency range with
a structural damping γ of 0.001.

corresponds to a traveling wave in the same direction of rotation.

Pierre et al.21 showed that the aeroelastic mode shapes transit from constant interblade
phase angle (or extended) modes to localized modes when mistuning increases. Also, there
are numerous mode crossings in the transition region, which are caused by the frequency
switching for different mistuned modes. This is demonstrated in Fig. 5, which shows the
4-th and 5-th mistuned aeroelastic modes. The modes on the left column are the results
using the blade mode method. The modes on the middle column are the one-step results
using the system mode method. The modes on the right are the structure-only modes.
Interestingly, the 4-th mode on the left column is similar to the 5-th mode on the middle
column. Also, the 5-th mode on the right column is similar to the 4-th mode on the middle
column. This indicates that the mistuned aeroelastic mode crossings are very complex in the
transition region. For these two sets of results, although the 4-th and 5-th mistuned modes
are similar, the mistuned mode crossing patterns are different because the frequency orders
of these two modes are switched. However, the mistuned structure-only modes are totally
different from the mistuned aeroelastic modes. In fact, for some structure-only modes, no
similar modes can be found in the aeroelastic modes. For example, Fig. 6 shows the modal
assurance criterion (MAC) numbers between the 3-rd structure-only mistuned mode and the
aeroelastic mistuned modes using the blade mode method and the system mode method.
The MAC number MACcd shows the linear dependence of two different modes Ψc and Ψd,
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Fig. 10. Aerodynamic stiffness coefficients using the system mode and the combined cantilever-blade
normal modes for the 1T system mode frequency range; CNS stands for constraint.

and is defined as33

MACcd = ∥(Ψc)∗ ⋅ (Ψd)∥22∥Ψc∥22 ⋅ ∥Ψd∥22 . (20)

The range of the MAC number is from 0 to 1, and a MAC number of 1 corresponds to two
modes that are linearly dependent. As shown in Fig. 6, the highest MAC number is only
about 0.3, which confirms the clear difference between structure-only and aeroelastic modes.

The aeroelastic mistuned modes are less localized compared to the structural mistuned
modes. Wei and Pierre2 showed that not only the mistuning level, but also the interblade
coupling is important for a mistuned mode to be localized. In this case, the additional aero-
dynamic interblade coupling affects the severity of mode localization. For example, Fig. 7
shows the MAC numbers between the 10-th converged aeroelastic mistuned mode and the
mistuned modes using other methods. The 10-th and 11-th one-step aeroelastic modes, as
well as the 11-th mode using the blade mode method, have the largest MAC numbers close
to 0.6 with this mode. Also, there is no similar structural mode for this aeroelastic mode.
Fig. 8 shows the magnitude of this mode (subfigure 8(a)) and the 10-th (subfigure 8(b)) and
11-th (subfigure 8(c)) one-step aeroelastic modes. Although the MAC numbers between the
10-th mistuned converged mode and these two one-step modes are the largest ones, there
are significant differences between the blade amplitude patterns of these three modes.
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5.4.2 Forced Response

The tuned and mistuned forced responses of the system in the 1T system mode frequency
range, subjected to an engine order 29 excitation, are shown in Fig. 9. The applied forces are
unit loads on one of the nodes at the tip of each blade. The aeroelastic peak frequencies are
smaller than the structure-only peak frequencies, which can be predicted from Fig. 4(a) since
an engine order 29 excitation corresponds to the same interblade phase angle as interblade
phase angle index 3. In general, the aerodynamic stiffness matrix should be recalculated for
every excitation frequency, however, only one aerodynamic stiffness matrix, calculated for
the eigenvalue problem, was used herein. The fluid-structure coupling introduces additional
damping into the system, so that the tuned and mistuned aeroelastic peak forced response
amplitudes are also smaller than those observed for the structure-only system. Also, the ad-
ditional aerodynamic coupling leads to the disappearance of several mistuned forced response
peaks. The results using the blade mode method are similar to the results using the system
mode method. Nonetheless, it is interesting to note that the resonance frequency where the
maximum mistuned aeroelastic forced response occurs is different for the results using the
blade mode method and the system mode method.

The amplification factor, defined as the ratio between the mistuned and tuned peak values, is
1.12 for the structure only case, and it is 1.87, 1.93 and 1.94 for the one-step result, converged
result and the result using the blade mode method. The large increase of the amplification
factor due to the inclusion of aerodynamic coupling can be predicted from Fig. 4. As shown
in Fig. 4(a), the tune mode corresponding to interblade phase angle index 3 has the largest
aerodynamic damping. A mistuned aeroelastic mode can be viewed as a linear combination
of tuned aeroelastic modes. Therefore, the damping of a mistuned aeroelastic mode can also
be viewed as a linear combination of the damping of tuned aeroelastic modes. Hence, the
beneficial effect of mistuning on flutter (as shown in Fig. 4(b)) is observed because the range
of the mistuned aerodynamic damping is smaller than the range of the tuned aerodynamic
damping. Thus, all the values of the mistuned aerodynamic damping are smaller than the
tuned aerodynamic damping corresponding to the interblade phase angle index 3. Hence,
the amplification factor is larger because the mistuned aerodynamic damping is smaller.

The 95 percentile response levels shown in Fig. 11 are calculated using Monte Carlo simula-
tions to determine statistically the likely maximum forced response amplification factor due
to mistuning. A number of 1,000 mistuning patterns are used for each mistuning level. Note
that the Monte Carlo simulations here assume that the aerodynamic stiffness matrix is the
same as the one obtained using the mistuning pattern shown in Tab. 1 (δen). In general, the
aerodynamic stiffness matrix may be different for distinct mistuning patterns if the system
mode method is used. As shown in Fig. 11, the aeroelastic 95 percentile response levels are
smaller than the structure only response when the mistuning level is small. This indicates
that the sensitivity of the amplification factor to mistuning is decreased by the aerodynamic
coupling. When the mistuning level becomes larger, the aeroelastic 95 percentile response
levels overpass the structure only response and increase to a larger value, around 3. This is
consistent with Fig. 9. To demonstrate the effect of different damping values for different
tuned system modes (as in the case of aerodynamic damping), two 95 percentile response
levels are also plotted in Fig. 11. The first one is referred to as the varied structural damping
case and the second one is referred to as the very large structural damping case. In the varied
structural damping case, no aeroelastic coupling is considered and the structural damping γ
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Fig. 11. 95 percentile response levels for the engine order 29 excitation in the 1T system mode
frequency range.

related to nodal diameter 3 modes is 0.003 while the structural damping γ is 0.001 for the
other modes. In the very large structural damping case, the aeroelastic coupling using the
system mode method with converged results is included, and the structural damping γ is set
to 0.02. Compared to the structure only result with fixed γ = 0.001, the sensitivity of the am-
plification factor to mistuning does not change significantly in the varied structural damping
case. However, for this case, when the mistuning standard deviation becomes larger than
0.5%, the amplification factor becomes larger than 3. Compared to the aeroelastic results
with γ = 0.001, the amplification factor is always smaller than 2 in the very large structural
damping case because the very large structural damping decreases the relative difference be-
tween the mistuned aeroelastic damping and the tuned aeroelastic damping corresponding
to the interblade phase angle index 3. Note that in the very large structural damping case,
the sensitivity of the amplification factor to mistuning from the aeroelastic calculation is still
smaller than the structure only results.

5.4.3 Accuracy of the Blade Mode Method

For brevity, the cantilever-blade normal modes are referred to as the blade modes in this
section. As shown above, the results using the blade mode method has notable differences
compared to the results using the system mode method. There are at least two possible rea-
sons for these differences: one is the difference in the vibration frequencies used in the aero-
dynamic calculation (system natural frequencies are used in the system mode method, and
natural frequencies of cantilever-blade normal modes are used in the blade mode method),
the other is the difference in the mode shapes. To account for the difference in the vibra-
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Fig. 12. Tuned forced responses to engine order 5 excitation with the aerodynamic stiffness matrix
using the system mode, the second cantilever-blade normal mode with and without the constraint
modes for the 1T system mode frequency range; CNS stands for constraint.

tion frequencies, a similar iterative process to the system mode method can be developed.
To account for the difference in the mode shapes, the neglected constraint modes can be
included. However, the inclusion of the constraint modes using the modal projection similar
to Eq. (11) is practically formidable for the aerodynamic calculations because of the large
number of constraint modes. For example, for this case study, the required computation time
is about 4.7 seconds on a SunBlade-1000 machine for a single passage of a layer with respect
to a specific mode shape and eigenvalue. Then, using the blade mode method with just one
blade mode requires about 0.5 hours of computation time because there are 15 layers and 26
different interblade phase angle for every blade mode. Usually, the computational time for
numerical simulations cannot be estimated using a simple multiplicative relation. However,
here that is possible because the unsteady code used in this paper is a frequency domain
code, and the computation time of the structural ROM code as well as the computation time
of the steady aerodynamic calculation are negligible compared to the computation time of
the unsteady aerodynamic calculation. Hence, using the blade mode method with one blade
mode and 990 constraint modes would cost approximately 500 hours. Using the system mode
method with 26 tuned system modes consumes about 0.5 hours per iteration step for the
tuned system, while the required computation time is about 13 hours per iteration step for
the mistuned system (because the unsteady calculation is needed for 26 different eigenvalues
for every tuned system mode).

In order to investigate the effect of neglecting the constraint modes, some artificial blade
modes are generated to calculate the aerodynamic stiffness shown in Eq. (7). These artificial
blade modes are either the system mode related to the nodal diameter zero, or the corre-
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sponding combined blade modes with or without the constraint modes (shown in Eqns. 4
and 9). For example, for the 1T system mode frequency range, these generated artificial
blade modes replace the original 1T blade mode to conduct the aerodynamic calculation,
and then use the modal projection shown in Eq. (11) to calculate the aerodynamic stiffness
matrix. Fig. 10 shows the resulting aerodynamic stiffness coefficients (the diagonal elements
of Ã in Eq. (7)) using these artificial modes generated from the system mode and using the
second, the first two, the first four, and the first ten blade modes. The MAC number between
the system mode and the corresponding 1T blade mode is 0.992, which means that they are
very close to linearly dependent. However, the results using the second blade mode without
the constraint modes are different from the results using the system mode. The inclusion
of other blade modes changes the real part of the aerodynamic stiffness matrix, does not
change the imaginary part. Nonetheless, the results with the constraint modes are in good
agreement with the results using the system mode, especially when other blade modes are
also included. Note that in Fig. 10, a strong sensitivity of aerodynamic stiffness coefficients
on the interblade phase angle is observed, particularly for interblade phase angle index 3.
It is believed that a fluid instability exists in this region for the case studied. The differ-
ence between the one-step and converged results shown in Fig. 4 can be caused by such a
fluid instability which is sensitive to frequency. Fig. 12 shows the tuned forced responses
to the engine order 5 excitation. The aerodynamic stiffness matrices are obtained using the
artificial modes generated from the system mode and the first two blade modes (with and
without the constraint modes). Significant differences in the peak forced response values and
the resonance frequencies are observed between the results using the system mode and the
first blade mode without the constraint modes. The inclusion of the constraint modes yields
almost identical results with the results obtained using the system modes.

In principle, the blade mode method with all the constraint modes would be more accurate
than the system mode method because the constraint modes represent all the physical cou-
pling at the interface, while only the modal coupling between the select tuned system modes
is considered in the system mode method. That would be the case only if all the constraint
modal coordinates are kept in the final ROM modal space. However, the size of the final
ROM modal space and the required time for the aerodynamic calculation would become
extremely large. Hence, the system mode method combined with the CMM model is a very
good compromise between accuracy and computation time.
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.

6 CONVERGENCE PREDICTIONS FOR AEROELASTIC CALCULATIONS
OF TUNED AND MISTUNED BLADED DISKS
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Mistuning, small differences between the sectors of bladed disks, can lead to drastic changes
in the dynamics of such systems. The large increase in the forced response of the system due
to mistuning has been observed and studied for a long time.34,35

Recently, compact and accurate reduced order models (ROMs) have been developed.36–42 In
particular, the fundamental mistuning model (FMM)41 and the component mode mistuning
(CMM)38 method have been proposed. These approaches use one group of tuned system
modes as basis for model reduction. The results obtained without aerodynamic coupling
and by using these ROMs have been shown to be as accurate as the results obtained us-
ing the finite element method (FEM).38,41 However, realistic bladed disks are coupled not
only structurally, but also aerodynamically. Previous studies on lumped structural param-
eter models showed that interblade structural coupling and mistuning are two key factors
affecting mistuned systems.2,3 Aerodynamic forces, which provide aerodynamic damping as
well as blade-to-blade coupling, may change the dynamics of the system dramatically. Also,
the flutter problem arises when aerodynamic forces are considered. Hence, the inclusion of
aerodynamic coupling in current ROMs is necessary.

Early studies on the frequency domain aeroelastic problem of mistuned bladed disks used
simple structural and aerodynamic models.43–46 In these simple models, the blades are usu-
ally represented by two dimensional airfoils or cantilevered beams, and they can only have
rigid body mode shapes, e.g. pitch and plunge motions, which are far from the real three-
dimensional elastic motion. Recently, the aerodynamic calculation of unsteady pressure in-
duced by elastic blade motions has been studied intensely, and numerous models have been
proposed.13,14,47–49 However, the applications of these aerodynamic models to aeroelastic cal-
culations are limited. Kielb et al.26,27 incorporated a three-dimensional Reynolds averaged
Navier-Stokes (RANS) CFD code into the FMMmodel.4150 incorporated a quasi-three dimen-
sional potential flow CFD code into the CMMmodel.38 Both methods use the cantilever-blade
normal modes (in the complex traveling wave coordinates) and their vibration frequencies
to calculate the unsteady aerodynamic forces.51 used both cantilevered blade modes and
constraint modes to calculate the unsteady aerodynamic forces.

Few studies have been conducted on the true realistic aeroelastic calculations.52 used a mode
modification technique to solve the tuned aeroelastic eigenvalue problem.53 proposed a direct
iterative method to calculate the aeroelastic eigenvalue problem.54 used the tuned structural
system modes and the aeroelastic frequencies to calculate the aerodynamic forces with an
iterative method. These studies have shown that the converged tuned and mistuned results
have significant differences compared to the one-step results or the results using the blade
normal modes.

In,54 the aeroelastic calculation requires much less computational time for the tuned case
compared to the mistuned case. The tuned cases require about 0.5 hour for one step on a
SunBlade-1000 machine and up to 5 steps to converge. The mistuned cases require about
10 hours for one step, and usually require more steps to converge compared to the tuned
cases. Such large amounts of computation time make it very important to be able to pre-
dict the number of iterations needed to get converged results. This paper proposes a new
hybrid method to predict the convergence history. Several critical ratios are introduced to
represent the properties of the system. This new technique is hybrid in that it uses both
exact information from accurate models as well as randomly generated Monte Carlo models
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which allow for stochastic predictions for general aeroelastic configurations.55 The relation
between the unsteady aerodynamic forces and the aeroelastic frequencies is approximated by
a linear relation, which holds for many cases. For example, in many aeroelastic problems, the
changes in frequency during the iterative process are small because structural stiffness dom-
inates the aerodynamic stiffness. Hence, structural frequencies are good starting states for
the iterative calculations (initial guesses). Also, good initial guesses may be available from
previous calculations, as is the case for design optimization applications. Herein, the new
hybrid technique is applied to a realistic bladed disk. The simulated convergence histories
give good predictions for the actual convergence histories. Monte Carlo simulations using the
new hybrid technique with varying critical ratios show that the magnitudes of aerodynamic
matrices and their gradients with respect to the aeroelastic frequencies are two key factors
affecting the convergence history.

6.1 Aeroelastic Model

This section summarizes the approach used to include aerodynamic effects within the CMM
method by using the tuned structure-only system modes with iterations over natural fre-
quencies and mode shapes. For a complete description of the aeroelastic models using the
cantilever-blade normal modes and the tuned structure-only system modes, one may refer
to.50,54 Note that the tuned aeroelastic calculation is not discussed separately here because
it is similar to the mistuned aeroelastic calculation.

In the tuned system modal space (employed by FMM and CMM methods), the modal equa-
tions for the eigenvalue and forced response problems can be expressed as38,54

[(1 + jγ)Ksyn +Ka − ω2Msyn]qS
φ = 0, (21)

and [(1 + jγ)Ksyn +Ka − ω2Msyn]qS
φ =ΦS,0

Γ

∗
f , (22)

where ∗ denotes the Hermitian of a complex matrix, j = √−1,ΦS,0 is a truncated set of normal
modes (in the frequency range of interest) of the tuned system with structural coupling
only, subscript Γ denotes the blade DOFs, qS

φ are the corresponding modal coordinates,
Ka is the complex aerodynamic coupling (stiffness) matrix related to ΦS,0, γ is the modal
structural damping, f is the physical force acting on the blades, and the matrices Msyn and
Ksyn are the whole modal mass and stiffness matrices, including the structural stiffness and
mass mistuning components. Note that only structural stiffness mistuning is considered in
this paper, and the tuned structure-only system modes ΦS,0 are normalized with respect
to the tuned mass matrix in the physical domain. Hence, Msyn = I. Also, note that KaqS

φ

represents the modal aerodynamic forces. Therefore, linearity between the blade motion and
the aerodynamic forces induced by the blade motion is assumed. Such linearity holds when
the blade motions are small.13,14 However, the dependence of the aerodynamic forces on the
complex vibration frequency is nonlinear,13 which requires iterative calculations for accurate
aeroelastic results. Note that Ka is a complex matrix.

Due to cyclic symmetry, the tuned structure-only modes can be expressed in a standing wave
form or a traveling wave form.56 In this paper, the traveling wave form is used. Hence, for
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every tuned structure-only mode, a constant phase angle σi between adjacent sectors exists,
which is referred to as the interblade phase angle

σi = 2πi

NB

, i = 0,1, . . . ,NB − 1, (23)

where NB is the number of blades, and i is the traveling wave index associated with the
tuned system mode. For i = 0 and i = NB/2 (if NB is even), the traveling wave and the
standing wave are the same. For i = 1 to i = (NB−2)/2 (if NB is even) or i = (NB−1)/2 (if NB

is odd), σi and σNB−i correspond to the same nodal diameter i, but with opposite traveling
directions. The undamped tuned structure-only system modes related to σi and σNB−i are
complex conjugates. Their real and imaginary parts are the corresponding standing wave
modes. It is easy to show that traveling waves with different interblade phase angles are
orthogonal to each other.56

The aeroelastic system modes can be obtained from Eq. (21) as

ΦS,n
Γ,i = NS∑

r=1

QS,n
φ,riΦ

S,0
Γ,r, i = 1,2, . . . ,NS, (24)

or in the matrix form as

ΦS,n
Γ =ΦS,0

Γ QS,n
φ , (25)

where the superscript n denotes results after n steps of iterative calculations, NS is the
number of tuned structure-only system modes used in Eq. (21), and the matrix QS,n

φ is in
the form of

QS,n
φ = [qS,n

φ,1 qS,n
φ,2 . . . qS,n

φ,NS
] . (26)

The unsteady aerodynamic forces (acting on a blade and) induced by the i-th aeroelastic
system mode ΦS,n

Γ,i can be obtained (using superposition) by the following linear relation

FS,n
i = NS∑

r=1

QS,n
φ,riF

S,0
i,r , i = 1,2, . . . ,NS, (27)

where FS,n
i is the unsteady aerodynamic force induced by the mode shape ΦS,n

Γ,i , and FS,0
i,r is

the unsteady aerodynamic force induced by the r-th tuned structure-only system mode shape
ΦS,0

Γ,r. Note that, at the n-th iteration step, the mode ΦS,0
i,r vibrates with the i-th mistuned

complex system natural frequency ωni (where ωni is complex; see Eq. (21)). Hence, FS,0
i,r is also

related to ωni . The elements of the aerodynamic matrix (in the mistuned aeroelastic system

modal coordinates) ÂM,n can be expressed as

ÂM,n
ij =ΦS,n

Γ,i

∗
FS,n
j

= (NS∑
r=1

QS,n
φ,ri

∗
ΦS,0

Γ,r

∗)(NS∑
t=1

QS,n
φ,tjF

S,0
j,t ) (28)

= NS∑
r=1

NS∑
t=1

QS,n
φ,ri

∗
ΦS,0

Γ,r

∗
QS,n
φ,tjF

S,0
j,t .
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Fig. 13. Finite element model of an industrial bladed disk.

The calculations in Eq. (28) can be simplified using the orthogonality between ΦS,0
Γ,r and

FS,0
j,t with different interblade phase angles. The aerodynamic matrix in the tuned structure-

only system modal coordinates can be derived by using the modal transformation shown in
Eq. (25). One obtains

Ka,n = Pn∗ÂM,nPn, (29)

where Pn = (QS,n
φ )−1 is the modal transformation from the mistuned aeroelastic system

modes to the tuned structure-only system modes.

After each iteration n, the matrix Ka,n is compared to Ka,n−1 and the iterative process
continues until their values are converged. An aerodynamic matrix with zero elements is
used for the first step of iteration.
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6.2 Hybrid Technique: General Case

In this section, for clarity, F(ωni ,ΦS,n
Γ,r) is used to replace FS,n

i and F(ωni ,ΦS,0
Γ,r) is used to

replace FS,0
i,r in Eq. (27). Hence, Eq. (27) can be rewritten as

F(ωni ,ΦS,n
Γ,r) = NS∑

r=1

QS,n
φ,riF(ωni ,ΦS,0

Γ,r), i = 1,2, . . . ,NS. (30)

¿From Eqs. 25, 28 and 29, Ka,n can be expressed as

Ka,n =Pn∗ÂM,nPn=Pn∗QS,n
φ

∗
ÂM,n

0 Pn (31)= ÂM,n
0 Pn,

where the elements of matrix ÂM,n
0 can be obtained using Eq. (30) as follows

ÂM,n
0,ij =ΦS,0

Γ,i

∗
F(ωnj ,ΦS,n

Γ,r)
(32)= NS∑

r=1

QS,n
φ,rjΦ

S,0
Γ,i

∗
F(ωnj ,ΦS,0

Γ,r).
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(d) Mistuned case

Fig. 15. Convergence errors of the actual calculation and the hybrid technique using the actual
matrices.

Usually, the aerodynamic calculation to obtain each term ΦS,0
Γ,i

∗
F(ωnj ,ΦS,0

Γ,r) in Eq. (32) is
very time consuming because of the large dimension of the overall problem as well as the
eigenvalue analysis required for the far field nonreflective boundary conditions.57 Hence,
parametric studies for the convergence history are formidably expensive computationally.
To overcome this difficulty, changes in aerodynamic forces F(ωnj ,ΦS,0

Γ,r) due to changes in
aeroelastic frequencies are approximated by assuming a linear dependence of aerodynamic
forces on vibration frequencies. Fig. 14 shows a typical variation of the natural frequency
ω0
R,j (i.e. real part of ω

0
j ) as a function of nodal diameter diagram, where each nodal diameter

represents an interblade phase angle of a tuned system mode. The horizontal lines correspond
to blade dominant modes, while the slant lines correspond to disk dominant modes. Usually,
the frequency range covering only one group of blade dominant system modes is considered, so
the differences between the aeroelastic frequencies are small. Although the actual dependence
of aerodynamic forces on the frequencies is nonlinear, their linear approximation can give
reasonable predictions about the convergence history. Also, the real and imaginary parts of
the complex aeroelastic frequency are assumed to be two independent variables because the
gradient of the aerodynamic forces with respect to these two variables can be distinct. Under
this assumption, F(ωnj ,ΦS,0

Γ,r) can be expressed as
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F(ωnj ,ΦS,0
Γ,r) ≈ F(ω0

r ,Φ
S,0
Γ,r)

+DR(ω0
r ,Φ

S,0
Γ,r)ωnR,j − ω0

R,r

ωref

(33)

+DI(ω0
r ,Φ

S,0
Γ,r)ωnI,j − ω0

I,r

ωref

,

where a subscript R denotes the real part of the complex frequency, and a subscript I denotes
the imaginary part of the complex frequency, D(ω0

r ,Φ
S,0
Γ,r) is the linear coefficient of the

aerodynamic force to the relative changes of natural frequencies, ω0
r is the r-th structure-

only complex frequency, and ωref is a reference frequency. Because only one group of blade
dominant modes is considered, the mean value of the corresponding frequencies for these
modes is used as ωref in this paper, except in the case of a tuned case, as discussed in
Sec. 6.3. Note that the unit for ω is rad/s instead of Hz here. Therefore, one can rewrite
Eq. (32) as

ÂM,n
0,ij ≈ NS∑

r=1

QS,n
φ,rjΦ

S,0
Γ,i

∗ [F(ω0
r ,Φ

S,0
Γ,r)

+DR(ω0
r ,Φ

S,0
Γ,r)ωnR,j − ω0

R,r

ωref

(34)

+DI(ω0
r ,Φ

S,0
Γ,r)ωnI,j − ω0

I,r

ωref

]
or

ÂM,n
0,ij ≈ NS∑

r=1

[ΦS,0
Γ,i

∗
F(ω0

r ,Φ
S,0
Γ,r)QS,n

φ,rj

+ΦS,0
Γ,i

∗
DR(ω0

r ,Φ
S,0
Γ,r)(QS,n

φ,rj

ωnR,j − ω0
R,r

ωref

) (35)

+ΦS,0
Γ,i

∗
DI(ω0

r ,Φ
S,0
Γ,r)(QS,n

φ,rj

ωnI,j − ω0
I,r

ωref

)] .
By examining Eq. (35), five matrices are defined as

A0,ij =ΦS,0
Γ,i

∗
F(ω0

j ,Φ
S,0
Γ,j), (36)

GR
0,ij =ΦS,0

Γ,i

∗
DR(ω0

j ,Φ
S,0
Γ,j), (37)

GI
0,ij =ΦS,0

Γ,i

∗
DI(ω0

j ,Φ
S,0
Γ,j), (38)

Tn
R,ij =QS,n

φ,ij

ωnR,j − ω0
R,i

ωref

, (39)

Tn
I,ij =QS,n

φ,ij

ωnI,j − ω0
I,i

ωref

. (40)
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(c) Third step

Fig. 16. Probability density function of results using the perturbed matrices for the mistuned case
in the 1F frequency range.

Hence, Eq. (35) can be rewritten in a matrix form

ÂM,n
0 =A0Q

S,n
φ +GR

0 T
n
R +GI

0T
n
I . (41)

Finally, the aerodynamic matrix in the tuned structure-only system modal space Ka,n can
be obtained as

Ka,n =A0 +GR
0 T

n
RP

n +GI
0T

n
I P

n. (42)

The linear dependence of Ka,n on Tn
R and Tn

I reflects the linear approximation of in Eq. (33).
Due to the orthogonality of vectors with different interblade phase angles, A0 and G0 are
block diagonal matrices in which every block corresponds to one interblade phase angle.
Moreover, A0 is precisely the tuned aerodynamic matrix after the first step in the iterative
calculation. In fact, during the first step calculation, an aerodynamic matrix with zero entries
is used. Hence, the aeroelastic eigenvalues and eigenvectors are the structure-only ones. Thus,
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(c) Third step

Fig. 17. Probability density function of results using the totally random matrices for the mistuned
case in the 1F frequency range.

both Pn and QS,n
φ are identity matrices, and ωnj − ω0

i = 0 when j = i. This results in Tn
R = 0,

Tn
I = 0 and Ka,n =A0. A0 is referred to as the aerodynamic (coefficient) matrix. GR

0 and GI
0

represent ratios between the change of every entry in A0 and the change of the corresponding
complex natural frequency. GR

0 and GI
0 are referred to as the frequency gradient matrices

and they can be estimated easily by changing the real and imaginary parts of the eigenvalues
and recalculating the tuned aerodynamic matrix. Tn

R and Tn
I account for the effect of the

complex frequency changes into the modal transform matrix between the aeroelastic and
structure-only modal spaces. Note that A0, GR

0 and GI
0 are constant during the iterative

calculations, which provides very important computational savings.

To investigate the effects of various factors on the iterative process, several ratios are defined
as follows
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rA = ∥A0∥
ωref

2
, (43)

rG = √∥GR
0 ∥2 + ∥GI

0∥2∥A0∥ , (44)

rF = σ(ω0
s )

ωref

, (45)

rV = ωD − ωB

ωref

, (46)

rM = ∥Ksyn
M ∥

ω2
ref

, (47)

where ∥A0∥ denotes the Euclidean norm of A0, σ(ω0
s ) is the standard deviation of the struc-

tural natural frequencies of the blade dominant system modes, ωD and ωB are the frequencies
in the frequency veering region corresponding to the disk and blade dominant modes, and
Ksyn

M is the mistuned part of the structural stiffness matrix Ksyn. If there is no frequency
veering region, rV = 0. rA, referred to as the aero ratio, denotes the strength of aerodynamic
coupling. rG, referred to as the gradient ratio, denotes the sensitivity of the aerodynamic
coupling to natural frequencies. Note that only one gradient ratio is defined because the
magnitudes of GR

0 and GI
0 are usually very similar. rF, referred to as the frequency ratio,

denotes the spread of the frequencies of the investigated group of blade dominant system
modes. rF is also an indicator of the strength of the structural coupling through the disk. A
larger rF indicates stronger structural coupling. rV, referred to as the veering ratio, denotes
the strength of the frequency veering phenomenon. Note, only one frequency veering region
is considered in the current study, although multiple frequency veering regions are easy to
implement. rM, referred to as the mistuning ratio, denotes the strength of the structural
mistuning. The assumption of a linear relationship between the aerodynamic forces and fre-
quency is most likely to be violated when the fluid system is near an instability such as an
acoustic resonance or shedding. Predicting the frequency of these fluid instabilities is more
complicated and an alternate method, such as a quadratic approximation may be needed.

6.3 Hybrid Technique: Tuned Case

When a bladed disk is perfectly tuned, no coupling is present between the tuned structure-
only system modes with different interblade phase angles. Therefore, a tuned aeroelastic
mode can only be a linear combination of the tuned structure-only system modes with the
same interblade phase angle. Hence, QS,n

φ , Pn and then Tn are block diagonal matrices, each
block corresponding to an interblade phase angle. From Eq. (42), the aerodynamic matrix
Ka,n is also a block diagonal matrix. In this case, the whole aeroelastic problem can be
decomposed into NB degraded aeroelastic problems. Therefore, Eq. (21) and Eq. (42) can be
simplified as [(1 + jγ)Λi +Ka

i − ω2I]qS
φ,i = 0, (48)

and
Ka,n
i =A0,i +GR

0,iT
n
R,iP

n
i +GI

0,iT
n
I,iP

n
i , (49)

where i = 0,1, ...,NB is the interblade phase angle index, and Λ is the undamped tuned
structural stiffness matrix. The dimension of each aeroelastic problem is the number of
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 18. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a mistuned system with changing rA and rG.

tuned structure-only system modes related to the corresponding interblade phase angle σi.
Compared to the general case, the dimension of the problem is one order of magnitude
smaller. Hence, the computation time saving is very important, especially when parametric
studies are desired, such as is the case for the Monte Carlo simulations.

In this paper, only two aeroelastic modes are considered in the simplified tuned case study.
Although more aeroelastic modes can be included easily in the computation, in most of
practical calculations (like the case of a frequency veering region), it is enough to consider
just two modes. For simplicity, the index i is dropped from Eq. (48) and Eq. (49), and a
superscript or a subscript T is used to denote the simplified tuned case. For example,

Λi = ΛT =Diag(ω01
2, ω02

2), (50)

Ka
i =Ka

T, (51)

A0,i =AT
0 , (52)

GR
0,i =GTR

0 , (53)

GI
0,i =GTI

0 , (54)

where Diag denotes a diagonal matrix, and ω01, ω02 are the two undamped tuned struc-

67



Convergence Error �

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

�
u�

l
�

a

�/2 �/2

Fig. 19. Illustration of confidence levels with confidence 1 − α.

tural frequencies in the veering region. The frequency ratio rF and mistuning ratio rM are
disregarded in this case, and the veering ratio rTV is redefined as

rTV = ω02 − ω01

ω01

. (55)

6.4 Results and Discussion

6.4.1 Case Study for an Actual Bladed Disk

In this section, the convergence histories of the aeroelastic calculations for an industrial
bladed disk from previous studies54 are reproduced using the hybrid technique. The 26-
bladed disk shown in Fig. 13 represents a stage of an industrial turbine. Fig. 14 shows the
structural natural frequencies versus nodal diameter numbers for the tuned system. Two
frequency ranges were studied in.54 The first one features the first group of system modes
(first flexural: 1F), ranging from 500 Hz to 1000 Hz. The other one features the second group
of system modes (first torsion: 1T). Because there is a frequency veering region in the 1T
frequency range, the dimension for this frequency range is 28. The blade stiffness mistuning
pattern considered in this paper has a standard deviation of 0.027 and a mean value of
zero. The structural damping used for aeroelastic calculation is 0.001. The mass ratio μ
of the airfoil is 310, where μ = m/(ρπb2) with m denoting the mass of the airfoil per unit
span, ρ denoting the steady flow density and b denoting half of the chord length. One step
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 20. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a mistuned system with changing rF and rV.

in the iterative calculation consumes about 40 minutes for the tuned case and 7 hours for
the mistuned case on a SunBlade-1000 machine. The tuned and mistuned structural modal
stiffness matrices can be obtained directly from the CMM computer code Turbo-Reduce
2002.38 The aerodynamic coefficient matrix A0 can be obtained after one step of calculation
for the tuned system. The frequency gradient matrices GR

0 and GI
0 can be calculated as

discussed in Sec. 6.2. The sensitivity matrices DR and DI are calculated by using a finite
difference approach, i.e., by perturbing the real and imaginary parts of the complex frequency
and calculating the changes in aerodynamic forces. Tab. 2 shows the reference frequency
and the actual ratios for these two frequency ranges. The bladed disk considered here has
relatively weak structural coupling and relatively strong aerodynamic damping. For real
turbomachinery bladed disks, the frequency variation of structural-only system modes can
be as high as 80% for some blisks and the aerodynamic damping is within the range of 1%
for most turbomachinery blading. Fig. 15 shows the simulated and actual convergence errors
versus numbers of calculation step for the tuned and mistuned systems in the 1F and 1T
frequency ranges. The convergence error is defined as

δn = ∣Ka
n+1 −Ka

n∣∣Ka
n+1∣ , (56)
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where ∣Ka
n∣ denotes the sum of absolute values of all the entries in the aerodynamic matrix

Ka after n-th step of calculation. Because Ka
0 = 0 is used, δ0 is always equal to 1, and hence

it is not shown. The actual iteration stops when δn ⩽ 10−5. The simulated results match very
well the actual results. For the mistuned case, in the 1F frequency range, the differences
between the simulated and actual results are slightly larger than those in other cases. These
differences are likely caused by the nonlinear relation between the aerodynamic forces and
the aeroelastic natural frequencies. Hence, the predictions made for convergence histories are
less accurate for cases of strong nonlinear dependence of aerodynamic forces on frequency.
Nonetheless, for many cases this dependence is approximately linear. For example, in many
aeroelastic problems, the changes in frequency during the iterative process are small because
good starting states for the iterative calculations (initial guesses) are available (e.g. from
structural frequencies, or from previous calculations, as is the case for design optimization
applications). To address general aeroelastic configurations, perturbed matrices are used.
For example, for the matrix A0, a perturbed matrix AP

0 is generated by perturbing every
entry of A0 with a random percentage within a certain range. If that certain range is εA, an
element of AP

0 can be obtained as

AP
0,ij = (1 + εA,ij) ⋅A0,ij, i, j = 1,2, . . . ,NS, (57)

where εA,ij is a random number, and εA,ij ∈ [−εA, εA]. Fig. 16 shows the probability density
function (PDF) of the convergence errors using the randomly perturbed matrices for the
mistuned 1F case. 10,000 samples are used and the percentage ranges are 0.3 for A0, GR

0

and GI
0, and 0 for others. The actual results are also plotted on Fig. 16. Although the

calculation of aerodynamic forces is still linear, the actual results are in the ranges of the
PDF or close. Note that in this case, the numerical simulation requires only about 3 minutes
for each iteration step with 10,000 samples.

Also, one can generate all the matrices randomly using the acquired ratios defined in Sec. 6.2.
For example, the reference frequency can be set to be the average of the structural frequencies
of the blade dominant modes. Next, every entry of A0 can be generated randomly first, and
then the Euclidean norm of A0 is forced to match the actual aero ratio rA. Fig. 17 shows the
PDF of the convergence errors using the totally random matrices for the mistuned 1F case.
As shown in Fig. 17, the hybrid technique using totally random numbers with fixed ratios
predicts the actual results with good accuracy. One may observe that the ranges of the PDF
in Fig. 16 are larger than those in Fig. 17. This is because the sampled space of totally random
systems includes the space of slightly perturbed systems. Hence, the actual convergence errors
are closer to the broader ranges of the Monte Carlo predictions (i.e. Fig. 16). Also, the first
step results in Fig. 16 and Fig. 17 are less accurate than the results after more iterations.
For the results after more iterations, the changes in the complex frequencies (compared
with results of the last iterative step) become smaller. Therefore, the assumption of linearity
between aerodynamic forces and complex frequencies is more closely satisfied, and the hybrid
approach is more accurate.

Tab. 3 shows the relative errors of the converged results using the hybrid method compared
with the actual converged results. For the 1F frequency range, the errors are small (although
above 10−5). For the 1T frequency range, the errors are larger. This is likely caused by the fact
that, having a veering region, the eigenvalues in the 1T frequency range have a broader range
than those in the 1F frequency range. Hence, the errors become larger. However, the purpose
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 21. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a mistuned system with changing rM and γ.

of the hybrid technique is to predict the convergence history of the aeroelastic calculation
correctly and quickly, and not to predict the actual aeroelastic results.

6.4.2 General Monte Carlo Simulation

To investigate the effects of various factors on the iteration convergence, a Monte Carlo
simulation is performed by changing two ratios while other ratios are kept constant. For
every combination of these ratios, all the matrices are determined randomly by matching
the ratios and the predefined reference frequency. Actually, under this formulation, the results
will hold irrespective of the reference frequency. The dimension of the system is 10 for normal
cases and 12 for cases with a frequency veering region. Usually, actual systems have larger
dimensions. However, a 10-dimension system is considered large enough to study the effects
of critical factors. 10, 000 samples are used for every combination of the ratios. The nominal
values of the ratios are 0.3 for rA, 1.0 for rG, 0.01 for rF, 0 for rV, 0.2 for rM and 0.001 for γ.

Fig. 18 shows the convergence error with changing rA and rG. The mean error, as well as the
90% confidence levels are plotted. As shown in Fig. 19, for a confidence 1−α, a α/2 portion of
all the samples fall below the lower confidence level δl and fall beyond the upper confidence
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 22. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a mistuned system with changing rA and γ.

level δu.58 Also shown in Fig. 19 is the average (mean) error δa. When rA = 0 or rG = 0, which
represents no aerodynamic influence or no aerodynamic matrix dependence on the complex
frequency, the convergence error is 0. The convergence error becomes larger when rA or rG
grows. If both rA and rG are very large, convergence cannot be achieved. This phenomenon
is not shown in Fig. 18 because the iterative calculation fails in such a situation. A large rA
indicates that the system has a large aerodynamic matrix, which can change the complex
aeroelastic frequency significantly. A large rG makes this aerodynamic matrix sensitive to
the change of aeroelastic natural frequencies. Hence, the iterative process fails to converge
when rA and rG are both large. Note that the computation time for one iteration step in
this case is about 70 minutes with 10, 000 samples.

Fig. 20 shows the convergence error with changing rF and rV. The basic trend is that the
system converges slower when rF or rV becomes smaller. However, the effect is relatively
small, and there is no case in which convergence cannot be achieved.

The convergence error with changing rM and γ is shown in Fig. 21. The structural damping
γ has no significant effect on the convergence error. When the mistuning ratio rM becomes
larger, the convergence error first grows rapidly, then drops, and finally approaches a con-
stant value. The mistuned system converges always slower than the tuned one. There are
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 23. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a mistuned system with changing rF and rM.

two major consequences of the growth of rM. First, the differences between the tuned and
mistuned structural frequencies become larger. Second, the off-diagonal terms in QS,n

φ be-

come larger. Note that when the system is tuned, QS,n
φ is a block diagonal matrix. Both

factors make the matrices TR and TI in Eq. (41) have larger variations during the iterations.
When the mistuning level is relatively small, this effect dominates, and the system converges
harder. However, when the mistuning level is very large, the combined (tuned and mistuned)
structural stiffness matrix becomes larger, which makes the relative effect of the aerodynamic
matrix smaller. Then, the system exhibits a slow reduction in the convergence error. Also,
overall, the effect of rM on the convergence is small compared to rA and rG.

As shown in Fig. 15, the convergence error is larger for a mistuned system than a tuned
system, which can be predicted from Fig. 21. Also, the convergence error is larger for the
1T frequency range than for the 1F frequency range. From Tab. 2, the major differences
between the critical ratios for these two frequency ranges are rG and rV. Because the effect
of rV is not very significant, the larger value of rG for the 1T range is the major reason for
the slower convergence in this frequency range.

Fig. 22 shows the convergence error with changing rA and γ. The structural damping has no
significant effect on the convergence error. The convergence error increases quickly when the
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 24. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a mistuned system with changing rG and rV.

aero ratio rA becomes larger. Fig. 23 shows the convergence error for various ratios rF and rM.
The effect of the frequency ratio rF on the convergence error is small. When the mistuning
ratio rM increases (from 0), the convergence error increases rapidly first, and then decreases
smoothly. Fig. 24 shows the convergence error for various rG and rV. A larger gradient ratio
rG makes the aeroelastic iterations harder to converge, while a larger veering ratio rV makes
the iterations easier to converge. However, the effect of rG is much more significant than rV.

6.4.3 Monte Carlo Simulation: Tuned System

A tuned system described in Sec. 6.3 is studied. The only critical ratios considered here are
rTA, r

T
G and rTV. 10,000 samples for every combination of these ratios are used for the Monte

Carlo simulation. The smallest one of the tuned undamped structural natural frequencies
is used as a reference frequency. For this case, the largest relative error in the aerodynamic
damping with one-step calculation is 20% compared to the converged result.

Fig. 25 shows the convergence error with changing rTA and rTG. The veering ratio rTV is 0.
Similar to Fig. 18, larger rTA and rTG make the aeroelastic calculation harder to converge. This
is consistent with,53 where Moyroud et al. state that tuned bladed disks made of composites
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 25. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a tuned system with changing rTA and rTG.

Table 2
Reference frequency and actual ratios for the 1F and 1T frequency ranges of the industrial bladed
disk.

Frequency range 1F 1T

ωref (rad/s) 4745 9616

rA 0.237 0.289

rG 0.625 2.415

rF 7.96 ∗ 10−3 8.94 ∗ 10−3

rV 0.0 5.92 ∗ 10−2

rM 0.131 0.0134

γ 0.006 0.001

are harder to converge than the tuned bladed disks made of metallic alloys. This is explained
herein by the fact that, for composite bladed disks, the ratios rTA and rTG are smaller than
those of metallic bladed disks under the same operation point and with the same geometry.
Actually, from Sec. 6.4.2, this conclusion also holds for the mistuned case. The convergence
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 26. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a tuned system with changing rTG and rTV.

Table 3
Relative errors between simulated converged results and actual converged results.

System 1F Tuned 1F Mistuned 1T Tuned 1T Mistuned

Error 8.35 ∗ 10−5 6.55 ∗ 10−4 4.36 ∗ 10−3 1.77 ∗ 10−2

error with changing rTG and rTV is shown in Fig. 26. The aero ratio rTA is 0.01. Similar to
Fig. 20, when the frequencies ω01 and ω02 (in Eq. (50)) are closer, the aeroelastic calculation
becomes harder to converge. This result is particularly useful to be compared with the
discussions of52 who states that for a tuned system, the stability of the iterations requires
that the eigenfrequencies are well separated. Note that in Fig. 25, a system with a zero value
of rTV can converge fast if rTA and rTG are both small. Also, note that Fig. 26 and Fig. 20
show a relatively small effect of rTV on the convergence error. This seems somewhat contrary
to.52 However, in,52 the iteration is formulated using a mode-modification technique, which
calculates the tuned aeroelastic eigenvalues and eigenvectors separately for every aeroelastic
mode. The aeroelastic calculations shown here in Sec. 6.2 and Sec. 6.3 are formulated by
solving the aeroelastic eigenvalue problem directly. Although this method requires more
computation time for finding eigenvalues and eigenvectors, it is shown that it is better than
the mode-modification technique in the sense of convergence. Fig. 27 shows the convergence
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(a) First step (b) Second step

(c) Third step (d) Fourth step

Fig. 27. Monte Carlo simulation results (mean error δa and error limits δu and δl of 90 % confidence
level) for a tuned system with changing rTV and rTA.

error for various rTV and rTA. The convergence error increases quickly with increasing rTA, and
the aeroelastic iterations become harder to converge when rTV approaches 0.
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7 ESTIMATION AND VEERING ANALYSIS OF NONLINEAR RESONANT
FREQUENCIES OF CRACKED PLATES
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It is well known that the natural frequencies of cracked elastic structures differ from their
healthy counterparts. A comprehensive literature survey of research activities regarding the
vibration problems of various structures with cracks is found in the work by Dimarogonas.59

In this paper, linear and nonlinear vibration of a cantilevered rectangular plate with a crack
is investigated. The primary focus of this study is the vibration response near the eigenvalue
loci veerings and crossings that occur as the crack length or location is varied. This work
was motivated by an observation of closely-spaced nonlinear resonant frequencies with similar
mode shapes, in the nonlinear frequency response of a turbine engine rotor with a cracked
blade.60

Eigenvalue loci veerings, also known as avoided crossings, or eigenvalue avoidance, are ob-
served in plots of eigenvalues versus a system parameter. In particular, a veering refers to
a region in which two eigenvalue loci approach each other and almost cross as the system
parameter is changed, but instead of crossing they appear to veer away from each other,
with each locus then following the previous path of the other.61 Although this phenomenon
was initially regarded as an “aberration” caused by approximation methods applied to the
original infinite-dimensional eigenvalue problems,62 it was shown by Perkins and Mote63 that
the phenomenon can be observed for continuous systems. Since then, several researchers have
noted and investigated the relation between veerings and mode localization phenomena.64–66

In conjunction with the localization, it is known that the veerings are associated with cou-
pling between the modes, which is typically seen as the mixed mode shapes near the veering
regions. There can also be a mixing between modes in different physical domains, such as
electrical and mechanical domains.67 These phenomena have also been investigated for the
damaged structures, such as two-span weakened column,68 and cables with damage.69

For vibration problems of cracked rectangular plates, variations in natural frequencies and
mode shapes due to crack length variations have been known for a long time. The initial
contribution to the study of vibration problems of cracked rectangular plates was made
by Lynn and Kumbasar,70 who calculated the vibration frequency drop of plates due to
cracking by numerically solving the Fredholm integral equation of the first kind. Petyt71

also investigated the variation of frequency of fundamental mode due to crack length by
experiments and a finite element method. Those contributions were followed by a number of
investigations based on plate vibration theory, including those by Stahl and Keer,72 Hirano
and Okazaki,73 Solecki,74 and Yuan and Dickinson.75 Although the trajectories of frequencies
versus crack length appear in these articles, the veering regions and associated dynamics of
the cracked plates near those regions were not highlighted. Liew et al.76 applied a domain
decomposition method to obtain the out-of-plane vibration frequencies of cracked plates, and
they not only confirmed the results found by Stahl and Keer72 and Hirano and Okazaki73 but
also considered a wider range of crack length ratio. It is noted that they examined a plate
with a centrally-located internal crack and reported frequency crossings instead of veerings. In
other words, for this case they observed that two approaching eigenvalue loci would intersect
as crack length increased, which is also known as crossover. More recently, Ma and Huang77

also reported variations in natural frequencies and associated mode shapes due to changes in
crack length for a square plate with an edge crack, based on experiments and finite element
analysis. As was mentioned by many others, Ma and Huang stated that the nonlinearity
due to the crack closing effect has to be considered for the in-plane bending case, but crack
closing was neglected in their study because their work focused on the out-of-plane bending
vibration.
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In the studies of cracked rectangular plate vibrations reviewed above, the in-plane bending
vibration was not considered and thus the crack closing effect was not examined. In contrast,
the issue of crack closing effect naturally arose in the studies of vibration problems of cracked
beams, for which in-plane bending vibration is typically of primary research interest. For the
study of cracked Bernoulli-Euler beams, a pioneering contribution was made by Christides
and Barr in their application of the Hu-Washizu-Barr variational principle to the cracked
beam problem.78 Further extension was made by Shen and Pierre for Bernoulli-Euler beams
with symmetric cracks79 and single-edge cracks.80 A generalization to the theory was made
by Chondros et al..81 However, in these studies, the nonlinear effect was not considered.
Gudmundson82 pointed out that measured natural frequencies of a beam with a fatigue crack
differ from those calculated without considering the crack closing effect. He also addressed
the significance of the crack closing effect for accurately predicting the frequency shifts due
to cracking. The crack closing effect is also known to cause phenomena that appear only in
nonlinear response cases, such as superharmonic and subharmonic resonances83,84 and period
doubling bifurcations.85,86

One of the methods to estimate the (primary) resonant frequencies of the cracked beams
is the application of the bilinear frequency approximation. This was initially introduced
for calculating the effective resonant frequencies of piecewise linear oscillators (e.g., Shaw
and Holmes87), and it has been used for approximating the effective vibration frequency of
multi-DOF piecewise linear systems (e.g., Butcher88). It has also been used for estimating
the natural frequency of cracked beams.86,89,90 Chati et al.91 extended the concept of the
bilinear frequency to study the vibration of a cracked beam using a multi-DOF oscillator
model. They assumed that if the crack is sufficiently shallow, the actual and bilinear mode
shapes are close to each other, and thus the frequency can be approximated by the bilinear
frequency. Most of the methods reviewed above assume that the crack has only two states—
closed or open. This assumption is accurate when the relative motion of the crack surfaces
is simple, such as the in-plane bending vibration of cantilevered beams. However, in general,
the motion of crack surfaces is more complicated, and there may be more than two states.
For example, crack closing may proceed gradually and/or occur at different regions on the
crack surfaces at different times.

The closing crack was also modeled by equivalent linear model by Kisa and Brandon,92

with the assumption that the stiffness change due to a crack can be expressed as a linear
combination of the stiffness matrix of uncracked beam and that due to cracking and contact.
An emerging approach for dealing with this issue is the application of Nonlinear Normal
Modes.93–95 However, the applicability of this approach is still limited to simple structures
or simplified vibration problems, due mostly to its computational costs for constructing the
nonlinear normal modes.

With regard to the veering phenomena for nonlinear structural systems, very little is known
about how the nonlinearities influence the response near the veering regions. Lacarbonara et
al.96 investigated nonlinear modal interactions of an imperfect beam near veering regions, the
nonlinearities of which are quadratic and cubic nonlinearities due to large-amplitude vibra-
tion, through perturbation and bifurcation analyses. They observed distinguishing features
in the response, such as mode localization due to nonlinear coupling and frequency-island
generation, which illustrates the richness of the dynamics in veering regions for nonlinear
structural systems.
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In this paper, the vibration of cracked cantilevered plates in frequency veering regions is
investigated. As reviewed above, veering phenomena have not been studied thoroughly for
cracked structures, in either the linear or nonlinear dynamics regime. Regarding the vibration
of cantilevered cracked plates, the research reviewed above focused only on the out-of-plane
vibration, and crack closing effects were intentionally neglected. On the other hand, studies of
cracked beams have focused on in-plane bending in most cases. Thus, the crack closing effect
on the vibration response has been investigated in many studies of cracked beams. How-
ever, veering and modal interaction phenomena between in-plane and out-of-plane vibration
modes have not been studied in this context. Moreover, in general, the veering phenomena
in nonlinear structural systems have not been studied well. Therefore, in this paper, first
the eigenvalue loci veering due to cracking is examined using a cracked cantilevered plate
example without considering the crack closing effect. The crack closing effect is then included
and associated nonlinear resonant frequencies are identified. A novel method for accurately
estimating the nonlinear resonant frequencies is then introduced, by generalizing the concept
of bilinear frequency approximation that utilizes the results of linear eigenvalue analyses of
the system. The method is validated by comparing the results with those calculated by the
nonlinear forced response analysis. Furthermore, the applicability of the method near the
veering regions is discussed, and the effects of the crack closing on the resonant frequencies
are discussed in detail for some specific veering regions.

This paper is organized as follows. In section 7.1, the cracked plate vibration problem and the
finite element model are introduced. In section 7.2, the linear free response of a cracked plate
is considered using a finite element model of a three-dimensional cantilevered plate with a
planar surface-breaking crack that runs parallel to the cantilevered edge, and the associated
frequency veering and crossing phenomena are shown. In section 7.3, a solution technique
for the nonlinear forced response analysis, called the hybrid frequency/time (HFT) method,
is briefly reviewed. The nonlinear forced response calculation is then carried out and the
effects of nonlinearity to the response in the neighborhood of representative veering regions
are discussed in detail. In section 7.4, the method for estimating the nonlinear resonant
frequency is introduced as a generalization to the bilinear frequency approximation.

7.1 Cracked Plate Model

In this paper, the vibration of a cantilevered rectangular plate comprised of linear isotropic
elastic material is considered. The plate is discretized with a standard finite element method (FEM),
and the deformation is assumed to be infinitesimally small. In this study, nonlinearities other
than the one due to intermittent contact at the crack surfaces are not considered. Namely,
the governing equation of the cracked plate is

Mü(t) +Cu̇(t) +Ku(t) = b(t) + f(u); M,C,K ∈ Rn×n,u,b, f ∈ Rn (58)

where u is the displacement vector, M, C and K denote the mass, damping, and stiffness
matrices, b(t) denotes the time-dependent external force, and f(u) denotes the nonlinear
force caused by the intermittent contact at the crack.

A finite element (FE) model of a cantilevered plate with a transverse crack is shown in
Fig. 28, where h = 1.5 × 10−1m, l = 6.0 × 10−2m, t = 3.0 × 10−3m. The material model is steel
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Fig. 28. Finite element model of the cracked plate

with Young’s modulus E = 200GPa, density ρ = 7800kg/m3, and Poisson’s ratio ν = 0.3. The
FE model is composed of 6,750 brick linear elements and has approximately 28,000 DOF.
This FE model is used for all the numerical results in this paper, and the generation of the
FE model as well as component mode synthesis were performed with the commercial code
ANSYS.97

7.2 Linear Free Response Analysis

7.2.1 Natural frequency variation due to variations in crack location and length

First, in order to visualize the variations in the natural frequencies for crack parameter
variations, which are closely related to the variations in the nonlinear resonant frequencies,
the underlying linear system is studied in this section. Namely, the nonlinear contact force
f(u) in the Eq. (58) is ignored, and for the FE model shown in Fig. 28, eigenvalue analysis was
performed for various values of lc/l and hc/h. The results for the first 15 natural frequencies
for two representative cases are shown in Fig. 29.

First, Fig. 29(a) shows the results where the crack length was fixed at lc/l = 40%, and the
crack location was varied as 1.33 ⩽ hc/h ⩽ 97.3%. As can be seen, the changes in the natural
frequencies due to the variation in hc/h are quite complicated, and multiple loci veerings
and crossings are observed. In order to examine the individual veering regions, some cases
with realistic crack length ratio, lc/l < 60%, are discussed below. For example in Fig. 29(a),
starting around hc/h = 15%, modes 10 and 11 approach each other, but rather than crossing
they veer away near hc/h = 19% with high curvature. Second, the crack location was fixed at
hc/h = 50%, and the crack length was varied, the results of which are shown in Fig. 29(b). The
most notable distinction from the case in Fig. 29(a) is that the natural frequency variation
due to crack length change is monotonic, i.e., as lc/l increases, all natural frequencies tend
to decrease. Although the amount of frequency drop is dependent on the mode of interest,
this is due to the fact that the stiffness of the plate decreases monotonically for all modes as
the crack length increases.
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Fig. 29. First 15 natural frequencies versus (a) crack location ratio hc/h for lc/l = 0.40 , (b) crack
length ratio lc/l for hc/h = 0.50

7.2.2 Mode shape variation due to variations in crack location and length
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Fig. 30. Magnified veeering/crossing regions and associated mode shapes: (a) 10th and 11th modes
for lc/l = 0.40; (b) fifth and sixth modes for hc/h = 0.50.
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Fig. 31. Magnified veering between modes seven and eight for hc/h = 0.63

In order to see the veering regions more closely, and to see the variations in the mode shapes,
representative cases are shown in Figs. 30 and 31. Figure 30(a) shows the veering between the
modes 10 and 11 for lc/l = 40%, where 1.33 ⩽ hc/h ⩽ 40%. An important characteristic of the
loci veering is the mode shapes associated with the natural frequencies on each locus before
veering are interchanged during the veering in a continuous manner.63 This is illustrated
in Fig. 30(a), which shows that mode shapes 10 and 11 become mixed and then appear to
begin switching as the crack location ratio is increased through the veering region. On the
other hand in Fig. 30(b), the region for the mode shape switching between modes five and
six is narrow, and it appears to be a loci crossing. This can be explained by considering that
mode five (before switching) corresponds to the second out-of-plane bending mode whereas
mode six (before switching) corresponds to the first in-plane bending mode, and there is
little or no coupling between these modes due to their geometric dissimilarity. Fig. 31 shows
another veering region due to crack length variation, for modes seven and eight with crack
location hc/h = 0.63. For this case, both mode mixing and switching can be observed in a
more continuous manner than the cases observed in Fig. 30.

7.3 Nonlinear Forced Response Analysis

In the previous section, the interchanging of modes as well as mode coupling were observed
in frequency veering and crossing regions. However, only natural frequencies of the linear
system were considered. The nonlinearity due to contact of the crack surfaces was neglected.
In this section, a method to calculate the nonlinear resonant frequencies of the cracked plate
is described. The method is then applied to the calculation of nonlinear resonant frequencies
in veering/crossing regions, and their characteristics are discussed.

7.3.1 Component Mode Synthesis

In order to generate a reduced-order model, the plate is separated into two components
(substructures) Ω1 and Ω2 along the crack path, as shown in Fig. 32, and a hybrid-interface
method of component mode synthesis (CMS)98,99 is employed. The CMS methods have been
widely used for the vibration analysis of systems such as friction-damped systems,100–102

build-up structures,103 and cracked structures.92,104 This process is advantageous over the
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Fig. 32. Plate divided into two substructures

direct application of FE analysis because it provides improved computational efficiency while
maintaining direct access to the dynamics of the crack-surface DOF. Furthermore, it has
good accuracy relative to the original FE model over the frequency range of interest. The
accessibility to the nodes on the crack surfaces is essential to the proper calculation of
the boundary condition at the crack surfaces, which is modeled as contact/impact forces
in the formulation described in 7.3.2. Namely, the dynamics of the FE degrees of freedom
are projected onto constraint modes Ψc, inertia relief attachment modes Ψa (if rigid-body
motion exists), and a truncated set of free-interface normal modes Φk. Interested readers
may consult, e.g., Craig,105 for the detailed formulation of each mode set.

Let the displacement vector u be partitioned into boundary DOF, ub, and interior DOF ui.
By denoting the inertia relief attachment coordinates and a truncated set of free-interface
modal coordinates as qa and qk, the linear projection is expressed as,

⎡⎢⎢⎢⎢⎢⎣
ub

ui

⎤⎥⎥⎥⎥⎥⎦ =
⎛⎜⎝ I 0 0

Ψic Ψ̂a Ψ̂k

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ub

qa

qk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(59)

where Ψ̂a = Ψia −ΨicΨba, Ψ̂k = Φik −ΨicΦbk, I is the identity matrix, Ψic is the boundary
partition of Ψc, Ψia and Ψba denote the interior and the boundary partitions of Ψa, and Φik

and Φbk denote the interior and the boundary partitions of Φk. Denoting Eq. (59) with a
compact notation, u = Ψq, the application of Eq. (59) to Eq. (58) yields a smaller number
of equations, i.e.,

M′q̈ +C′q̇ +K′q = b′ + f ′(q) (60)

where M′ = ΨTMΨ, C′ = ΨTCΨ, K′ = ΨTKΨ, b′ = ΨTb, and f ′ = ΨTf . The superscript
“′” is omitted for convenience in the subsequent formulations.

7.3.2 Hybrid frequency/time domain method

For the calculation of steady-state response to harmonic excitation, an extension to the
alternating frequency/time-domain method,106 which is based on the concept of the method
of harmonic balance,107 is employed in this study. Because of its computational efficiency and
accuracy, this type of method has been developed and applied to forced response problems for
various nonlinear systems, such as friction damped systems101,102,108,109 and cracked shafts.110

In particular, the hybrid frequency/time-domain (HFT) method developed by Poudou et
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al.100,111,112 and the authors104 is applied in this paper. Namely, the method assumes that
the steady-state vibration response of q in Eq. (60), as well as the external force b and the
nonlinear force due to intermittent contact f are approximated as truncated Fourier series,
i.e.,

q = Re( nh∑
k=0

(Qc
k − jQs

k)ejkωt) (61)

b = Re( nh∑
k=0

(Bc
k − jBs

k) ejkωt) (62)

f = Re( nh∑
k=0

(Fc
k − jFs

k) ejkωt) (63)

where 2π/ω is the fundamental frequency, nh is the number of non-zero harmonics and
j = √−1. Note that Qc

k and −Qs
k are the vectors of real and imaginary parts of kth Fourier

coefficients of q, where superscripts c and s denote cosine and sine components of the vibra-
tion respectively. The same notation is applied to Bc

k, B
s
k, F

c
k, and Fs

k. Substituting Eqs. (61)
through (63) into Eq. (60) and considering the orthogonality of harmonic functions, it results
in a nonlinear algebraic equation with respect to the Fourier coefficients for kth harmonic
number, i.e.,

ΛkQk = Bk +Fk(Q) (64)

where Q0 = Qc
0, B0 = Bc

0, F0 = Fc
0, Λ0 = K, Qk = [(Qc

k)T, (Qs
k)T]T, Bk = [(Bc

k)T, (Bs
k)T]T,

Fk = [(Fc
k)T, (Fs

k)T]T, and
Λk = ⎛⎜⎝−(kω)

2M +K (kω)C−(kω)C −(kω)2M +K
⎞⎟⎠ (65)

for k = 1, . . . , nh. Assembling Eq. (65) for all k = 0,1, . . . , nh,
ΛQ = B +F(Q) (66)

where Λ is a pseudo-block diagonal matrix with Λk on its diagonal blocks for k = 0, . . . nh,
Q = [QT

0 , . . . ,Q
T
nh
]T, B = [BT

0 , . . . ,B
T
nh
]T, and F = [FT

0 , . . . ,F
T
nh
]T. Eq. (66) can then be

solved with nonlinear algebraic equation solvers. For the numerical examples shown in this
paper, the Hybrid Powell method113 was employed.

7.3.3 Results of forced response analysis

In this subsection, the result of nonlinear forced response analysis for the cantilevered cracked
plate is presented, with the methods described in 7.3.1 and 7.3.2. The damping was chosen
to be C = αM + βK where α = 1.22 and β = 8.16 × 10−9, which result in damping that is
approximately equivalent to modal (structural) damping ratio ζ = 1.00 × 10−4 (γ = 2.00 ×
10−4) within the frequency range of 1900 ⩽ f ⩽ 2000Hz. Vectors of harmonic forcing, the
resultant of which is equal to 1N, is applied to the nodes on the tip face of the plate to
excite the modes of interest. The number of harmonics was chosen as nh = 9, which showed
convergence in the resonant frequency predicted in the frequency response for the modes of
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Fig. 33. Convergence on the forced response results of the sixth mode (in-plane bending) for
hc/h = 0.5 and lc/l = 0.167; ——, nh = 9, -----, nh = 7, – – –, nh = 5, – - – - –, nh = 3.

interest. A representative result of a convergence study in terms of the number of harmonic
numbers is shown in Fig. 33 for the sixth mode with hc/h = 0.5 and lc/l = 0.167. For the case
shown in Fig. 33, the predicted resonant frequency converged within 0.003% relative error.
Representative results are shown in Fig. 34 where hc/h = 0.5, lc/l = 0.167 for Fig. 34(a), and
lc/l = 0.2 for Fig. 34(b). Fig. 34(a) shows the resonant peaks corresponding to modes five
and six, which correspond to the third out-of-plane bending and the first in-plane bending
modes, respectively, whereas the order of the modes is interchanged in Fig. 34(b).

7.4 Bilinear Frequency Approximation

7.4.1 Formulation

As an alternative way of predicting the nonlinear vibration frequencies, the bilinear frequency
approximation is generalized for the analysis of three-dimensional cracked structures, and an
analysis framework based on reduced-order modeling as well as prediction of mode switching
during the veering regions is proposed in this section. The resonant peaks predicted by the
forced response to harmonic excitation is then compared with those calculated by the bilinear
frequency approximations.

The bilinear frequency was originally introduced as the effective vibration frequency of a
piecewise linear, single-DOF system and defined as (e.g., Ref.87),

ωb = 2ω1ω2

ω1 + ω2

(67)

where ωb is the bilinear frequency, ω1 is the natural frequency of one of the linear systems
associated with the piecewise linear system, and ω2 is that of the other linear system of
the piecewise linear system. This expression is the exact solution, for the frequency of free
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(b)

Fig. 34. Results of nonlinear harmonic response analysis for hc/h = 0.5 : (a) lc/l = 0.167, ——, fifth
mode (out-of-plane bending), -----, sixth mode (in-plane bending); (b) lc/l = 0.200, -----, fifth mode
(in-plane bending), ——, sixth mode (out-of-plane bending).

oscillation of the piecewise linear single-DOF oscillator with vanishing clearance/gap at the
equilibrium. The application of Eq. (67) to a multi-DOF piecewise linear system is rather
straightforward if there is only one pair of linear systems. However in the cases of cracked
plates formulated with multiple DOF on crack surfaces, it involves multiple piecewise linear
systems, or a conewise linear systems.93 Hence an assumption has to be made such that the
cracked system has only two linear systems corresponding to two states, i.e., the crack is open
or closed. These are designated as states 1 and 2, respectively, in the following formulation.
The definition of the states 1 and 2 is a natural extension to that proposed by Chati et al.,91

which was applied to the analysis of in-plane bending vibrations of a cracked beam. Namely,
with the assumption of the open state, there is no connection between the nodes on one
crack surface and the nodes on the other surface (Fig. 35(a)), allowing the inter-penetration
of the crack surfaces. On the other hand with the closed state, the relative DOF along the
direction that is perpendicular to the crack surfaces are fixed to be zero, whereas the other

89



(a) (b)

Fig. 35. Constraints for bilinear frequency calculation: (a) Open (no constraints); (b) Closed (slid-
ing).

two DOF of each node are allowed to move freely in the plane tangent to the constrained
direction (Fig. 35(b)). In other words, the crack surfaces are allowed to slide with respect
to each other, which is consistent with the assumption employed in the formulation in 7.3.2.
Associated mathematical formulation is given as follows.

For a given crack length, eigenvalues of Eq. (58) for undamped case with open crack assump-
tion are obtained as

Kφ = ω2
1Mφ (68)

where φ is the eigenvector and ω2
1 is the associated eigenvalue. On the other hand, the

eigenvalues and eigenvectors for the other case, namely the case with allowing sliding of
crack surfaces, are obtained by imposing appropriate constraints on Eq. (68) as follows.
Let A and B denote the crack surfaces facing each other, by assuming that the amplitude
of vibration is much smaller than the finite element mesh size on the crack surfaces, it is
possible to identify the finite element nodes that may be in contact during the vibration
cycle. Hence such pairs of nodes are numbered and a set Ccp is defined where all numbers
that denote the contact pairs are included. Defining gn as the gap between the nodes on the
surfaces A and B for the nth contact pair, the constraints to be imposed on the nodes of
nth contact pair are expressed as

gn = (un)A − (un)B = 0, n ∈ Ccp (69)

where (un)A and (un)B denote the displacements of the nodes on the surface A and B,
projected onto the normal direction pointing outward from the surface A or B. It is noted
that appropriate coordinate transformation must be applied to the displacement vector based
on the normal vector at each node, in order to correctly calculate gn. It should also be
noted that the motion of the nodes in tangential plane that is perpendicular to the normal
direction, is not constrained at all by Eq. (69), i.e., the nodes are free to slide with each
other on the tangential plane. This also indicates that the crack surfaces are assumed to
be frictionless, which is widely-employed assumption for the vibration problem of cracked
beams and plates. Applying the constraints Eq. (69) to the eigenvalue problem Eq. (68), a
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constrained eigenvalue problem is obtained as⎡⎢⎢⎢⎢⎢⎣
K NT

N 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
φ

λ

⎤⎥⎥⎥⎥⎥⎦ = ω2
2

⎡⎢⎢⎢⎢⎢⎣
M 0

0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
φ

λ

⎤⎥⎥⎥⎥⎥⎦ (70)

where N is the matrix of coefficients that are associated with Eq. (69) and the appropriate
transformation matrix, and λ is the vector of Lagrange multipliers of size ∣Ccp∣. One method
to solve this indefinite eigenvalue problem is to use an eigenvalue solver for indefinite sys-
tems. Another method is to first eliminate the redundant equations due to the constraint
equations Eq. (69), and the resulting positive definite eigenvalue problem is then solved by
an eigenvalue solver for definite systems. It should be noted that this methodology can easily
be incorporated with the reduced-order modeling framework described in 7.3.1 as the motion
of the nodes on the crack surfaces in the three-dimensional space can be captured with the
reduced-order model.

With the eigenvalue problems Eqs. (69) and (70), the ith bilinear resonant frequency ωbi of
the cracked plate is approximated based on Eq. (67):

ωbi = 2ω1iω2i

ω1i + ω2i

(71)

where ω1i and ω2i denote the frequencies of the ith mode of the states 1 and 2. It is emphasized
that the index i does not denote the index of eigenvalues, but it denotes the index of the
eigenvectors of the non-cracked plate. Namely, the eigenvectors of the non-cracked plate are
indexed based on their natural frequencies, i.e., for non-cracked plate, the eigenvalues are
ordered as ω1 ⩽ ω2 ⩽ ⋅ ⋅ ⋅ ⩽ ωN−1 ⩽ ωN where N is the size of the non-cracked plate model, and
corresponding eigenvectors are labeled as [φ1,φ2, . . . ,φN−1,φN]. The reason for introducing
this ordering will become apparent shortly. The bilinear frequency ωbi for a given crack length
is calculated by using the natural frequencies of the corresponding ith mode of the states 1
and 2.

The advantage of this method is that the frequency of the nonlinear response is obtained
without calculating the associated response shapes, thus it only involves eigenvalue extraction
of two linear systems. However, as mentioned, this method is known to be accurate for
systems with a relatively short crack. In addition, a drawback of this method is that the
choice of proper pairs of ω1i and ω2i is not apparent with the presence of a veering or crossing,
because the mode shapes associated with the natural frequencies switch their orders. A way
to overcome the latter problem is to track each mode by observing the correlation between
the modes during the variation of crack length or crack location. In this paper, the modal
assurance criterion33 (MAC) is employed as the measure of correlation.

Denoting the crack length as p (= lc), it is noted that N and λ are dependent on p. That
is, N = N(p) and λ = λ(p). The eigenvector is also dependent on p, or φ = φ(p), and the
correlation between the ith mode shape of the system with p = p0 and the jth mode shape
with the perturbed crack length p = p0 +Δp can be characterized by

MACk
ij = ∣φki (p0)Tφkj (p0 +Δp)∣2∣∣φki (p0)∣∣2∣∣φkj (p0 +Δp)∣∣2 , k = 1,2 (72)
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Fig. 36. Comparison between natural frequencies with open and sliding B.C.’s., and bilinear fre-
quencies for the system with hc/h = 0.50: (a) The fifth and sixth natural frequencies of the system
with sliding and open B.C.s, and bilinear frequencies: ---◇---, sixth mode with sliding B.C.; ---×--
-, fifth mode with sliding B.C.; – – ◇ – –, sixth natural frequency with open B.C.; – – × – –, fifth
natural frequency with open B.C.; —◇—, sixth bilinear frequency; —×—, fifth bilinear frequency.;
(b) Close-up view of the veering region for natural frequencies with open B.C. and bilinear frequen-
cies: – – ◇ – –, sixth natural frequency with open B.C.; – – × – –, fifth natural frequency with open
B.C.; —◇—, sixth bilinear frequency; —×—, fifth bilinear frequency.

where φ is the eigenvector of the system defined by Eq. (70), the subscripts i and j denote the
indices for modes, the superscript k indicates the state, and MACk

ij takes the value between
0 and 1, which respectively correspond to no correlation, and consistent correlation between
φi(p0) and φj(p0 +Δp). Namely, the ith eigenvector is tracked based on the value of MAC
throughout the variation of the crack length (p), such that the correct natural frequencies
for the ith eigenvector in Eq. (71) can be calculated.

In order to better clarify the behavior of the natural frequencies of the system with open and
sliding boundary conditions, as well as the bilinear frequencies, the above mentioned analysis
framework was applied to the reduced-order model of the cracked plate with hc/h = 0.50.
As an example, the veering region between the fifth and sixth modes are shown in Fig. 36.
As was shown in 7.2.2, the modes of interest are the in-plane and out-of-plane bending
modes. In Fig. 36, two significant insights into the behavior of the frequencies are shown.
The first is that the existence and location vary between the cases with open and sliding
boundary conditions, and bilinear frequency. For the case with sliding boundary condition,
the veering between fifth and sixth modes does not exist. On the other hand for the open
boundary condition case, the loci of fifth and sixth modes approach and veer away where
10 ⩽ lc/l ⩽ 15%. Therefore the bilinear frequency also has the veering region due to that for
the open boundary condition, but slightly shifted toward larger crack length ratio because of
the absence of the veering for the sliding boundary condition case (Fig. 36(b)). The second
is that the bilinear frequency is always bounded by the frequencies corresponding to the
cases with sliding and open boundary conditions, which are respectively the upper and lower
bounds (Fig. 36(a)). This can also be easily verified from Eq. (71), i.e., if ω1i ⩽ ω2i, then
ω1i ⩽ ωbi and ωbi ⩽ ω2i. Furthermore, it is noted that the width between the upper and lower
bounds indicates the strength of the effect of contact nonlinearity on the resonant frequency.
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For instance, for the fifth bilinear frequency that corresponds to the in-plane bending mode,
the width between the bounds is much larger than that for the sixth bilinear frequency,
which corresponds to the out-of-plane bending mode. This is due to the fact that the motion
of the in-plane bending mode is greatly influenced by the existence of the contact force at
the crack surfaces, whereas the out-of-plane bending modes is not so much affected by the
contact force considering that the motion of the crack surfaces is almost perpendicular to
the crack surfaces.

It is noted that there have been other approaches for obtaining approximate bilinear fre-
quencies for multi-DOF systems, such as the one presented in Refs.,88,92,93,114 which is based
on the construction of an equivalent linear stiffness matrix. The current implementation of
the proposed method is not compatible with the equivalent stiffness matrix method, as the
linear subregions, which are the systems with the sliding B.C. and the one with the open
B.C., are realized by the application of constraints at the discontinuities. It means that the
subregions have different number of DOFs, and the resulting stiffness matrices are not the
same size. This issue could be solved by first applying the modal decomposition to the matri-
ces for both subregions, and construct the equivalent stiffness matrix in the modal space, by
adjusting the modal stiffness matrix size by mode truncation such that size of the modal ma-
trices of the subregions is identical. However, the resulting equivalent modal stiffness matrix
is a diagonal matrix with bilinear frequencies on its diagonal, hence this method produces
the same bilinear frequencies as the one produced by the proposed method. It is noted that
even with the equivalent stiffness method, the matching of correct modes is still necessary to
calculate the bilinear frequencies, as the natural frequencies on the diagonal terms of modal
stiffness matrices do not necessarily represent the same mode.

7.4.2 Comparison with the results of forced response analysis

Using the bilinear frequency approximation described above, the nonlinear vibration fre-
quencies of the cracked plate are calculated, and they are compared with those obtained by
the HFT method. It is noted that the comparison between the resonant frequencies obtained
by forced response analysis, and the bilinear frequencies, namely the vibration frequencies of
unforced system, has been made based on the assumption that the resonant frequencies reside
in the vicinity of the frequencies associated with the nonlinear normal modes.115 Further-
more, the resonant frequencies are assumed to be independent of the amplitude of forcing,
based on the fact that the resonant frequencies of piecewise linear systems with the vanishing
gap at the equilibrium are not dependent on vibration amplitude.87,104

It is also noted that the HFT method is capable of calculating the gradual opening and closing
of crack faces during a vibration cycle, by considering the three-dimensional time trajectory
of nodes on crack faces at the steady-state. A detailed formulation can be found in Ref.,104

and its accuracy was validated by a comparison with the results of time integration of a FE
model. The role of the HFT method here is to find the accurate frequency response results
without any assumption on the number of linear subregions, as opposed to the assumption
that there are two linear subregions for the bilinear frequency approximations.

Three representative veering regions are considered, which are the cases where (a) the interac-
tion between the loci is weak and the corresponding modes are: (1) in-plane and out-of-plane
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Fig. 37. Comparison between bilinear frequency assumption and HFT method, and corresponding
mode shapes with open B.C. : (a) hc/h = 0.50, −○−, bilinear frequency, ‘×’, HFT method; (b)
hc/h = 0.60, −○−, bilinear frequency, ‘×’, HFT method; (c) hc/h = 0.63, −○−, bilinear frequency, ‘×’,
HFT method.

bending modes, and (2) both out-of-plane bending modes, and (b) the interaction between
the loci is strong and veering occurs in a continuous way and the associated modes are both
out-of-plane bending modes.

First, the veering between an in-plane bending mode and an out-of-plane bending mode
is considered, using the modes five and six, for hc/h = 0.50, as shown in Fig. 30(b). The
results of forced response analysis as well as the calculation based on bilinear frequency
assumption are shown in Fig. 37(a). As can be seen, the order-switching of modes can
be observed even for this nonlinear system. The most notable distinction from the linear
assumption, i.e., Fig. 30(b), is that the veering occurs with longer crack length at around 20%
in Fig. 37(a), than the one at around 10% with the linear assumption in Fig. 30(b). This is due
to the stiffening effect because of the contact/impact of crack surfaces during the vibration
cycle, which represents the dynamics of the cracked plates appropriately. Regarding the
bilinear frequency approximation, a notable result has been observed: the bilinear frequency
assumption predicts the resonant frequency calculated by HFT method quite well even for
relatively large crack length ratio (lc/l ⩽ 40%).
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Second, the veering between two out-of-plane bending modes is considered, using the modes
nine and ten for hc/h = 0.60, and the calculation results are shown in Fig. 37(b). This result
also shows that bilinear frequency approximates the resonant frequencies quite well for the
case of veering between out-of-plane bending modes, with relatively large crack length. Even
though the effect of nonlinearity on the vibration frequency is smaller than that on the in-
plane bending modes, as it does not involve much contact/impact between crack surfaces,
this clearly indicates that the bilinear frequency approximation can also be used for the
prediction of nonlinear vibration frequencies of out-of-plane bending modes.

Third, the veering between the torsion and out-of-plane bending modes are examined, using
the modes seven and eight for hc/h = 0.63 and results are shown in Fig. 37(c). This veering
region features a switching of modes in a continuous way, or in other words, the mode shapes
gradually change as the crack length is varied. This result shows that the bilinear frequency
approximation predicts the nonlinear vibration frequency quite well even for the modes that
exhibit complicated geometry due to coupling between modes. Moreover, the results show
that the approximation is accurate even for large cracks.

Lastly, it is restated here that the possibility of a non-vanishing gap at the crack faces at
the equilibrium, which is known to change the nonlinear resonant frequency, is ignored in
the above formulations. Detailed discussions on the effects of gap for the piecewise linear
oscillators can be found in Refs.,88,93,94 and bilinear frequency expression for piecewise linear
oscillators with a gap can be found in Refs..88,114 Furthermore, the discussion on the effects
of a gap at the equilibrium for the forced vibration problems of a cracked structure was
done by the authors in Ref.,104 by the use of the HFT method. It was shown that as the
amplitude of vibration increases, the nonlinear resonant frequency monotonically increases
after the amplitude of vibration exceeds a threshold, and converges to a certain value, as
can be seen in Ref..94 Such behavior of the nonlinear resonant frequency might be captured
by the extension of the amplitude-dependent bilinear frequency expression for piecewise
linear oscillators, to the system with multiple discontinuities. However, such discussions and
formulations are beyond the scope of this paper.

95



.

8 AN EFFICIENT REDUCED ORDERMODELING TECHNIQUE FORNON-
LINEAR VIBRATION ANALYSIS OF STRUCTURES WITH INTERMIT-
TENT CONTACT
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Vibration problems of structures with intermittent contact have been studied extensively for
several decades. These problems have practical importance and feature theoretical complexity
due to their nonlinear nature. A numerical modeling procedure of such problems based on
the finite element (FE) method is presented in this paper. This work is motivated by a need
for developing a model-based crack detection algorithm of elastic structures based on their
spectral properties, such as resonant frequencies and response shapes. In order to properly
predict the resonant frequencies of such structures, one has to consider the nonlinearity
caused by intermittent contact at the cracks, the so-called closing crack or breathing crack
effect. This has hindered analysts from accurately calculating the resonant frequencies of
cracked structures, because they cannot be calculated from classical linear modal analysis. As
some sophisticated contact algorithms have been developed, such as the penalty method116

and the augmented Lagrangian method,117 the accuracy of the results of time transient
simulation with FE models involving intermittent contact has been improved. Furthermore,
studying vibration problems of such structures with an FE model with a realistic complexity
is becoming feasible with the aid of high-performance computers. However, in turn, due to
the advancement of these technologies, analysts tend to create models with a large number
of degrees of freedom (DOF). This is based on the expectation that, as the model becomes
more realistic and the results become more accurate, the problem can still be solved in a
reasonable amount of time. However, at some point the number of DOF will overwhelm even
the most advanced hardware and software. In fact, as the model complexity increases, the
cost of solving contact problems increases dramatically, even when the potential contact areas
are known a priori. This occurs even if one uses reduced order modeling techniques, such as
the Craig-Bampton method.118 For forced response vibration problems of such structures,
one can use accurate and efficient semi-analytical methods such as the ones based on the
harmonic balance method (e.g., Ref.107), by representing the steady-state dynamic response
of the model with a truncated Fourier series. However, such methods still suffer from the
increase of computational cost as it requires a fair number of harmonics to be included
for the Fourier transform, in order to obtain an accurate result. Therefore, the goal of this
paper is to propose an efficient reduced order modeling framework for vibration problems
of elastic structures involving intermittent contact, with particular attention to modeling
nonlinear vibration of cracked structures. The focus is placed upon reducing the number of
DOF involved in the contact regions, in an automatic manner.

This paper is organized as follows. In section 8.1, a literature survey over the related fields
is provided. In section 8.2, the proposed modeling framework is presented, including the
reduced order modeling approach and contact DOF selection method. As applications of the
method, a case study is shown in section 8.3, using an FE model of a cantilevered cracked
plate.

8.1 Background

The issues of reducing and selecting DOF of FE models have been extensively studied by
various methods and perspectives, such as the reduction of the interface DOF between sub-
structures, selection of master DOF for Guyan reduction,119 optimal sensor placement, and
optimal constraint locations. However, many of the available methods share to some extent
similar goals and related to each other as described later.
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Firstly, the issue of reducing the number of interface DOF between the components has
been studied by several researchers. Brahmi et al.120 proposed a method for reducing the
number of interface DOF before the assembly of substructures, where basis vectors are
chosen based on the combination of secondary modal analysis of the interface DOF partitions
of the matrices, and the truncation of modes based on the singular value decomposition.
Balmés121 introduced the framework for generalizing interface DOF such as constraint modes,
by considering the new basis representing the actual interface displacements. Castanier et
al.122 also proposed a technique for reducing the number of interface DOF by applying
the modal analysis and mode truncation to the constraint mode partition of the matrices
produced by the Component Mode Synthesis (CMS),118 the resulting modes of which are
called the characteristic constraint modes after being transformed back into the finite element
coordinates. All of these methods achieve the order reduction of the DOF at the interface.
However, they do not provide any criteria as to how the interface DOF need be selected for
accurately enforcing the boundary conditions.

Secondly, the selection of master DOF has been a crucial factor for determining the spectral
property of the reduced order model for Guyan reduction-based reduction techniques, and
many algorithms for the selection of the master DOF have been developed. As it shall be
discussed later, this class of methods produces the results that tend to solve the optimization
problem for the problems studied in this study, thus it is very relevant to our objective. An
automatic master DOF selection algorithm was first proposed by Henshell and Ong,123 in
which the master DOF are chosen where the inertia is high and the stiffness is low, whereas
the slave DOF are chosen where the inertia is low and the stiffness is high. This process can
be automated by examining the radian frequency ωs defined by fixing all DOF except the
DOF index s. Namely, ωs ≜ √kss/mss, for s = 1, . . . , n, where kij and mij are the entries at
the ith row and jth column in FE stiffness and mass matrices of size n. The index s with the
largest ωs is identified at each iteration step, and the DOF is eliminated by an application of
Guyan reduction with s being the slave DOF and all the other DOF being the master DOF.
This process can be repeated until the number of master DOF reaches the desired number.
An approach similar to this algorithm was proposed by Shah and Raymund124 based on
the discussion of Kidder and Flax,125–127 where the number of master DOF is controlled by
iteratively eliminating the DOF whose ωs is larger than the pre-defined cut-off frequency
ωc that is chosen to be approximately three times the highest significant frequency in the
frequency range of interest. Independently from the work by Henshell and Ong, Grinenko and
Mokeev developed an order reduction technique named frequency-dynamic condensation,128

which also proposed a criterion to select master DOF. Although their criterion was legitimate,
the implementation of the selection algorithm still suffers from tedious exhaustive-search
calculation for selecting the DOF. The selection method proposed by Matta129 also uses
the ratio kss/mss with the similar criterion to that proposed by Henshell and Ong.123 It
was addressed that the method can be applied not only to the Guyan reduction but also
to the CMS, where both static and vibration modes are used as basis vectors, onto which
the system dynamics are projected. A method proposed by Bouhaddi and Fillod130 used a
different concept where if a DOF a is a node of an eigenmode, then fixing the DOF a results
in λ̂i = λi where λi is the ith eigenvalue of the non-fixed system, and λ̂i is the eigenvalue of the
system with DOF a being fixed. This concept may be understood using a vibration problem
of a string with both ends fixed. That is, the lowest natural frequency of the string with a
single support becomes the highest, if the support is placed at the node of the second mode
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of vibration.131 This is because the first mode with the constraint then becomes identical
to the second mode of the unconstrained string, which has the eigenvalue as the feasible
upper bound of the first eigenvalue with a single constraint. It is noteworthy that Bouhaddi
and Fillod explicitly aimed for maximizing the minimum eigenvalue of the system where all
the master DOF fixed. This concept will be revisited in 8.2.3. The methods for the node
selection reviewed so far are based on Henshell and Ong method to some extent. Another
class of methods is that based on the concept of modal energy. The method proposed by
Kim and Choi132 uses the energy distribution among the DOF for each mode, and by taking
the partial sum over the rows of what they call energy distribution matrix, primary DOF
set can be chosen. On the other hand the method proposed by Cho and Kim133 utilizes the
energy estimation in element-level by the Rayleigh quotient value of each element. Kim and
Cho then proposed a selection method consisting of two steps;134 model order reduction by
Improved Reduced System (IRS)135 using the master DOF selected via a method based on
energy estimation of each element,133 and subsequent sequential elimination method123 with
an iterative IRS. Another automatic DOF selection method named modal energy selection
method proposed by Li136 uses metric called index of classification, based on the approximate
modal energy associated with each DOF. The method was successfully applied to an FE
model of a cantilever beam problem. Oh and Park137 also proposed a criterion for selecting
the master DOF based on singular values of the modal matrix, however, it suffers from the
computational cost due to exhaustive search over the possible master DOF sets, and depends
on engineer’s knowledge and intuition.

Thirdly, a similar but slightly different issue is the selection of measurement locations for vi-
bration testing. For example, one may need to measure vibration displacements of a structure
to determine vibration modes, typically with a limited number of sensors or the locations
where the sensors can be placed. Thus, one may like to maximize the information one can
obtain as much as possible, with the limited number of sensors or locations. However the ques-
tion arises as to how the sensors need to be located, since the optimal configuration of sensors
for such objective cannot be easily determined. There have been many methods developed
to date for achieving this goal with various approaches. In particular, one of the successful
approaches are based on information theory, which determine the sensor locations by opti-
mizing a norm of the Fisher information matrix.138 Among them, one of the most widely
used techniques is the effective independence vector method, or the EIDV139 method devel-
oped by Kammer.140 The method determines the placement of sensors within the candidate
locations while maintaining as much independent information as possible, i.e., maintaining
the measured mode shapes as independent as possible. Therefore, it is natural to hypothesize
that the application of the nonlinear boundary conditions to the optimum sensor locations
would also well represent the real boundary conditions where the boundary conditions are
applied to all locations in the region. This method is hereby considered in this study and
the formulation is discussed in detail in 8.2.3.

Lastly, the issue of finding the optimal constraint locations to maximize the fundamental
natural frequency of a structure is considered. This issue has an important relationship with
the optimal master DOF selection. For instance, suppose there is a structure that can vibrate,
and one may want to increase the lowest natural frequency as much as possible, by allocating
a finite number of supports or kinematical constraints to the structure. However, the problem
of finding the optimal number and the locations of such supports is not as easy as it appears.
Therefore, it may be necessary to apply mathematically expensive optimization algorithms
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Fig. 38. An elastic structure with potentially contacting boundaries

to obtain such support locations, such as done in the work by Zhu and Zhang.141 On the
other hand, Åkesson and Olhoff142 studied the problem by applying the Courant’s maximum-
minimum principle. Namely if there is a discrete dynamical system of size n and there are
r (< n) kinematical constraints applied to the system, all the eigenvalues of the structure
increase, and the increased eigenvalues are bounded by the following formula:

λ0
i ⩽ λi ⩽ λ0

i+r, i ∈ {1,2, . . . , n} (73)

where λ0
i and λ0

i+r denote the ith and (i + r)th eigenvalues of the structure without the
constraints, and λi is the ith eigenvalue of the constrained structure. Also based on the same
principle and the findings of Ref.,143 Won and Park144 applied minimization method to obtain
the optimal support location to achieve the maximum fundamental natural frequency of a
cantilevered plate. They showed that the optimal support locations should be on the nodal
lines of the (r+1)th mode of the unconstrained structure. It is noted that this result conforms
to the vibration problem of a fixed string mentioned above. This method was successfully
applied to their specific examples, but the method can be applied only to special cases if the
potentially-constrained region is the entire region of the structure, where the points on the
nodal lines can be selected. Namely, if the regions to which the constraints are applied are
limited to some specific regions of the structure, then the nodal lines may not exist in such
regions, and the minimization problem becomes more complicated.

It is interesting to note that the idea of constraining the nodal lines was used to optimally
select the master DOF for Guyan reduction by Bouhaddi and Fillod,130 but they were not
aware of the applicability of their method to optimally select the support positions, while
Won and Park were not aware of the applicability of their method to optimally select the
master DOF locations for Guyan reduction. In this paper, we take advantage of this similarity
between the optimal master DOF selections and the constraint locations, in order to achieve
the optimal selection of the DOF where the nonlinear boundary conditions are applied.
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8.2 Mathematical Formulation

Consider small vibration problems of an elastic structure represented as Ω with a fixed
boundary Γg, where the structure may or may not involve intermittent contact at ΓA and ΓB
during the vibration cycles, such as shown in Fig. 38. Namely the boundaries open and close,
thus the vibration problem is nonlinear because the condition for the the boundaries to be in
contact is dependent on the displacement field itself. That is, the boundary conditions at ΓA
and ΓB are nonlinear. It is well known that the system eigenvectors and eigen-frequencies are
different from the actual response shapes and resonant frequencies of this nonlinear problem.
In this paper, they are respectively referred to as the nonlinear normal modes (NNMs) and
NNM frequencies.

Now, if the structure is discretized with a method such as finite element method, the non-
linearity associated with the contact is localized, in the sense that the nonlinearity is caused
only by a small portion of the entire structure. In the following formulations, a set of indices
of DOF in such region is denoted as B (boundary), whereas a set of indices of the DOF
in the rest of the regions is denoted as I (internal), and partitions of vectors and matrices
associated with these sets are designated with subscripts of the associated lower-case italic
letters, i.e., b and i. The sizes of the sets are denoted as ∣B∣ = nB and ∣I ∣ = nI . All the other
DOF sets defined hereinafter follow the same notation.

If the finite element mass and stiffness matrices are denoted as M ∈ Rn×n and K ∈ Rn×n and
the nodal displacement vector is given as x ∈ Rn, the governing equations of the vibration
problem with the absence of external forcing and damping may be written in a partitioned
matrix-vector form as follows:⎛⎜⎝Mbb Mbi

Mib Mii

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ẍb

ẍi

⎤⎥⎥⎥⎥⎥⎦ +
⎛⎜⎝Kbb Kbi

Kib Kii

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
xb

xi

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
fb(xb)
0

⎤⎥⎥⎥⎥⎥⎦ (74)

where a dot ( ˙ ) denotes a time derivative, and fb ∈ RnB denotes the nonlinear force as-
sociated with the intermittent contact. When dealing with this type of nonlinear vibration
problems, one can apply linear reduced order modeling techniques, such as Guyan reduc-
tion,119 system equivalent reduction expansion process (SEREP),145 iterated improved re-
duced system (IIRS),146,147 or Component mode synthesis (CMS).118 With such methods,
one can obtain smaller system matrices by reducing the size of xi by means of Rayleigh-Ritz
coordinate transformation comprising of various basis vectors such as static deformations
and vibration modes, yet keeping the accessibility to the physical coordinates of xb. For
instance, with the help of CMS, one can obtain a system with desired spectral properties
and accessibility to xb, the size of which is as small as nB DOF plus the number of linear
normal modes whose frequencies lie in the frequency ranges of interest. The use of such lin-
ear reduced order modeling methods greatly helps ones to analyze the dynamic response of
systems with localized nonlinearities, such as transient dynamic analysis,148 and nonlinear
harmonic response analysis.104 However, even with these reduced order modeling methods,
if the number of DOF involved in the b partition becomes large, especially the cases with
very fine mesh in the contacting regions, one cannot take advantage of the linear reduced
order modeling techniques, as the computational cost associated with the nonlinear dynamic
analysis typically grows as the number of DOF in the b partition increases. Furthermore, if
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one simply attempts to eliminate some of the DOF in the b partition, it results in inaccurate,
or even wrong results, in comparison to the results obtained with a full set of DOF in the
b partition. Therefore, in order to obtain accurate computational results, such as those of
nonlinear forced response, one needs to keep as many boundary DOF as possible, which
could easily result in prohibitively costly calculations. Typically as a “workaround” to avoid
the inaccurate results due to the lack of sufficient DOF considered and at the same time to
obtain efficient computational model, one has to select the DOF in a heuristic way, which
greatly depends on the system characteristics and analyst’s experience and intuition. More-
over, if the model is developed in such ways, the error contained in the following analysis
results cannot be estimated a priori. Our aim here is to develop an automatic way to select
the DOF in B for a desired number of DOF to be selected.

8.2.1 Primary Model Reduction

In order to reduce the number of DOF included in I to make the subsequent development
more efficient, first a model reduction is applied to Eq. (74). Namely, I is further divided
into two sets, i.e., I = O ∪D where O is a set of DOF indices associated with the nodes to
be used in the following analysis, such as observing the behavior of the system or applying
external loading, and D is the rest of DOF indices in I, which is to be apparently deleted
from the system by the reduction methods. In addition, a set of DOF indices to be used as
the master DOF is defined as active DOF, designated as A, and A = B ∪O. Now consider
an eigenvalue problem of the system Eq. (74), where the eigenvalue λ and the corresponding
eigenvector φ must satisfy the following:

⎛⎜⎝Kaa Kad

Kda Kdd

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
φa

φd

⎤⎥⎥⎥⎥⎥⎦ = λ
⎛⎜⎝Maa Mad

Mda Mdd

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
φa

φd

⎤⎥⎥⎥⎥⎥⎦ (75)

where φ = [φT
a ,φ

T
d ]T. In this study, a mixed-boundary CMS of Hintz-Herting98,99 is chosen

for the primary model reduction. Namely, without the presence of rigid body modes, the
coordinate transformation is defined as⎡⎢⎢⎢⎢⎢⎣

xa

xd

⎤⎥⎥⎥⎥⎥⎦ =Hη = (Ψ Φ̂)⎡⎢⎢⎢⎢⎢⎣
ηa

ηm

⎤⎥⎥⎥⎥⎥⎦ (76)

where xa = ηa, ηm is a vector of modal coordinates, Ψ and Φ̂ are so-called constraint modes
and truncated free-interface normal modes in a modified form, which are respectively defined
as

Ψ = ⎛⎜⎝ I−K−1ddKda

⎞⎟⎠ (77)

Φ̂ = ⎛⎜⎝ 0

Φd +K−1ddKdaΦa

⎞⎟⎠ (78)

andΦ = [φ(1),φ(2), . . . ,φ(k)], k < n, each subscript in parentheses denoting the corresponding
mode number. Using the transformation defined as Eq. (76), the projected eigenvalue problem
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Fig. 39. Schematic of the node sampling: ●, selected node (N)

is obtained as

KHη = μMHη (79)

where MH = HTMH and KH = HTKH. It should be noted that the projected eigen-
value problem Eq. (79) possesses at least the same eigenvalues of the original systems, i.e.,
λ(1), λ(2), . . . λ(k) (the indices may be different from the ones for the projected system.) This

is because the subspace spanned by the columns of (Ψ, Φ̂) contains the eigenvectors of
Eq. (75), i.e., φ(j) ∈ span(Ψ, Φ̂) for j = 1, . . . k, as span(Ψ, Φ̂) = span(Ψ,Φ), and hence the
projected eigenvalue problem has the same eigenvalues as the original ones. It means that,
the eigenvalues of the projected system Eq. (79) does not contain any error in the eigenval-
ues and eigenvectors, with respect to those of the original eigenvalue problem of the finite
element. Although this advantage comes with the expense of calculating the eigenvalues and
eigenvectors of the finite element model, it is not a major drawback considering that the
computational cost involved in the nonlinear computations with the original finite element
would be more prohibitively expensive, than calculating a few normal modes of the finite
element model.

8.2.2 Nonlinear DOF sampling

With the reduced order model obtained in 8.2.1, the next step is to select the DOF in B
such that the nonlinear characteristics of the system can be well approximated by applying
the nonlinear boundary conditions only on the selected DOF.

As mentioned, accurately calculating the NNM frequencies is of primary interest of this
study. The NNM frequencies of the system can be obtained in several ways, such as time
integration of Eq. (74) for harmonic loading, or harmonic-balance-based frequency/time
domain analysis.104,149 It was shown by the authors that the NNM frequencies for cracked
plates obtained by the nonlinear harmonic response analysis can be well approximated by the
application of bilinear frequency approximation even when the crack surfaces involve multiple
DOF.104 Therefore, as a measure to evaluate the results obtained with the selected DOF,
bilinear frequency is used in the following development. Namely, the ith NNM frequency ωni
can be approximated by a bilinear frequency ωbi defined as

ωbi = 2ωoωs
ωo + ωs (80)

where ωo and ωs are the natural frequencies of the corresponding linear systems, which can
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be respectively obtained by solving the following eigenvalue problems:

KHη = (ω2
o)MHη, subject to open B.C.’s (81)

KHη = (ω2
s)MHη, subject to sliding B.C.’s (82)

The open B.C. is a boundary condition where no constraint is imposed on the nodes on ΓA
and ΓB, or the DOF in B. Thus in fact Eq. (81) is identical to Eq. (79). On the other hand
for the sliding B.C., it is assumed that ΓA can freely slide with respect to ΓB but cannot
separate along the normal directions, as described as follows.

Here a contact pair is defined as a pair of nodes on ΓA and ΓB, which may or may not be in
contact during the vibration, and a set of numbers denoting all the contact pairs is defined as
Ccp. For the jth contact pair in Ccp, three mutually perpendicular normal vectors at a node
on ΓA are defined as nj1, n

j
2, and nj3 where nj1 is the normal vector pointing outward from

the surface, nj2 and nj3 are unit vectors that are tangent to the surface and perpendicular
to each other. Using these vectors, a coordinate transformation matrix Pj

A = (nj1,nj2,nj3) is
defined for each contact pair, with the assumption that a nodal displacement vector contains
only translational DOF, such that the x1 component of the displacement vector of the node
is aligned with ni1, and pointing outward from the surface. For the other node of the jth
contact pair on ΓB, the corresponding coordinate transformation matrix that aligns the x1

component of the nodal displacement vector with the normal vector is defined as Pj
B = −Pj

A.
Now assembling Pj

A and Pj
B for all j ∈ Ccp, a coordinate transformation is defined as

P = ⎛⎜⎜⎜⎜⎝
Pb 0 0

0 Io 0

0 0 Im

⎞⎟⎟⎟⎟⎠ , where Pb = nCcp

A
j=1
(Pj

A,P
j
B) (83)

and A is an assembly operator, Pb ∈ RnB×nB , Io ∈ RnO×nO , and Im ∈ RnM×nM . Next, for the
jth contact pair, the x1 components of the nodal displacement vectors, which are denoted as
ηjA and ηjB, are transformed to a relative displacement uj ≜ (ηjA+ηjB)/√2 and a displacement

vj ≜ (ηjA − ηjB)/√2. Namely, denoting the set of DOF corresponding to ujA and ujB for all jth
contact pair, ⎡⎢⎢⎢⎢⎢⎣

uj

vj

⎤⎥⎥⎥⎥⎥⎦ =
1√
2

⎛⎜⎝1 1

1 −1
⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ηjA

ηjB

⎤⎥⎥⎥⎥⎥⎦ (84)

Now defining sets X, Y , and Z (X ∪ Y ∪Z = B and nX = nY = nZ = nCcp) that respectively
contain sets of indices of the DOF corresponding to x1, x2, and x3 for all j ∈ Ccp, and denoting
the coefficient matrix in the Eq. (84) as Rj, one can define a transformation matrix R by
assembling Rj for j ∈ Ccp as follows

R = ⎛⎜⎝Rx 0

0 I

⎞⎟⎠ , where Rx = nCcp

A
j=1
(Rj) (85)

and Rx ∈ RnX×nX . Considering that P−1 = PT and R−1 =RT, the eigenvalue problem Eq. (79)
can be transformed to

Kq = (ω2
o)Mq (86)
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where η = PRq, M = (PR)TMHPR, and K = (PR)TKHPR. Now noting that q can be
partitioned into q = [qr,qg] where qr is the vector of relative DOF, or uj,∀j ∈ Ccp, and qg
is the generalized internal DOF containing vj,∀j ∈ Ccp, x2 and x3 components of the nodal
displacement vectors of the nodes of the contact pairs, displacement vectors of the observer
nodes, and modal coordinates. That is, Eq. (86) can be written as

⎛⎜⎝Krr Krg

Kgr Kgg

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
qr

qg

⎤⎥⎥⎥⎥⎥⎦ = (ω2
o)⎛⎜⎝Mrr Mrg

Mgr Mgg

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
qr

qg

⎤⎥⎥⎥⎥⎥⎦ (87)

where R ⊂X and G = (A/R) ∪M .

The best approximation to the NNM frequency can be obtained when the sliding boundary
conditions are imposed on all of the nodes on the surface ΓA and ΓB. Namely the associated
eigenvalue problem with the sliding boundary conditions can be obtained by constraining all
the relative DOF, or qr = 0, i.e.,

Kggqg = (ω2
s)Mggqg (88)

Now, we assume that we do not like to consider all nodes in R for the subsequent forced
response analysis due to the large number of DOF involved in R. In other words, the nodes
where the nonlinear boundary conditions are applied should be sampled such as illustrated
in Fig. 39. The selected DOF is designated as nonlinear DOF, and a set of indices of the
nonlinear DOF is denoted as N , where N ⊂ R. The rest of DOF in R is designated as linear
DOF, and associated set is denoted as L where N ∪L = R. Therefore, the bilinear frequency
should be calculated with ωs such that the sliding B.C. is applied only on the DOF in N , or
qn = 0, i.e., ⎛⎜⎝Kll Klg

Kgl Kgg

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ql

qg

⎤⎥⎥⎥⎥⎥⎦ = (ω2
s)⎛⎜⎝Mll Mlg

Mgl Mgg

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ql

qg

⎤⎥⎥⎥⎥⎥⎦ (89)

Considering that the value of the natural frequency of the system with the open boundary
conditions, ωo, is independent on neither the number nor the pattern of the selected DOF
(recalling that span(Ψc, Φ̂) contains the chosen eigenvectors), one can see from Eq. (80)
that ωbi is dependent only on ωs for a fixed ωo. Now considering the Rayleigh’s theorem of
constraints defined by Eq. (73), it is known that all the system’s eigenvalues increase if a
single constraint is imposed on a system. Therefore, as the number of constraints on Eq. (79)
to calculate ωs increases, ωs increases. Furthermore, considering that ωbi is a monotonically
increasing function of ωs for a fixed ωo, or ∂ωbi/∂ωs = 2ω2

o/(ωo + ωs)2 ⩾ 0, one can state that
the best approximation of ωbi for a given number of nN can be obtained when the maximum
ωs is achieved. Thus a corresponding maximization problem is stated as follows:

max
N⊂R

ωs(N)
subject to ∣N ∣ = nN (90)

This maximization problem may be solved by mathematical programming methods, such as
integer programming or topology optimization methods as was done in Ref..141 As it shall
be discussed next, this maximization problem can in fact be treated in a more efficient way
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by the use of Guyan reduction and some methods to choose the master DOF for reduced
order modeling techniques.

8.2.3 Automatic master DOF selection

The methods for automatically selecting the master DOF for the Guyan reduction have
been previously developed, such as in Refs..123,124,130 In particular, the method proposed by
Henshell and Ong123 appears to be the most successful approach. Although it has been known
to be computationally expensive due to the nature of eliminating a single DOF per iteration
and successive application of Guyan reduction, this can be alleviated by the application of the
primary model reduction by the CMS as developed in 8.2.1. As was mentioned by Bouhaddi
and Fillod,130 and Shah and Raymund,124 the master DOF of Guyan reduction should be
chosen such that the valid eigenvalue range of the reduced order model is maximized. In
general, it has been known that the eigenvalue range of validity is “bounded” by the lowest
eigenvalue of the system with all the master DOF fixed. Here this concept is applied to the
problem of finding the optimal N that solves Eq. (90). Namely, the corresponding eigenvalue
problem is Eq. (89) by regarding qn as the master DOF. As was discussed in the Ref.,150 the
error bounds in the ith eigenvalue of the reduced model produced by the Guyan reduction
can be obtained a priori by the following relationship

0 ⩽ εi ⩽ λi
λs,min − λi (91)

where εi ≜ (λi−λi)/λi is the relative error in the ith eigenvalue, λi is the ith eigenvalue of the
reduced order model, λi is the ith eigenvalue of the original finite element model, and λs,min
is the smallest eigenvalue of the system with all the master DOF fixed. For λi/λs,min ≪ 1,
the upper bound asymptotically converges to the following value,151

0 ⩽ εi ⩽ λi/λs,min (92)

Therefore, it is apparent that maximizing λs,min results in minimizing the upper bound of
the error for all the eigenvalues of the reduced order model. Hence this gives us a guideline
for selecting the master DOF for Guyan reduction such that the errors in the eigenvalues of
the resulting reduced order model are minimized.

By observing this fact from another point of view, one may see that if a certain set of master
DOF can achieve the maximum λs,min, we can obtain not only an accurate reduced order
model that can well approximate the first few lowest eigenvalues of the original system, but
also as a “byproduct”, a good estimate on the optimal constraint locations that maximize the
fundamental frequency. Recasting this to our original problem of selecting the optimal set
N , the error bounds Eq. (92) associated with the eigenvalue problem Eq. (89) are written as

0 ⩽ εi ⩽ (ω2
o)i(ω2

s)1 − (ω2
o)i (93)

where εi ≜ [(ω̄2
o)i − (ω2

o)i]/(ω2
o)i, (ω̄2

o)i is the ith eigenvalue of a reduced order model, (ωs)1
is the lowest natural frequency of Eq. (89). The corresponding maximization problem is
Eq. (90), and by solving this problem for the lowest eigenvalue, (ωs)1, one can expect that
the chosen nodes pattern is at least sub-optimal.
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[1] i = 1 to i = nR − nN Calculate
√
kjj/mjj for j ∈ R Find q1 such that

√
kq1q1/mq1q1 =

max
j∈R

√
kjj/mjj

L ← {q1, . . . , qnk
} where q’s are the DOF associated with the kth contact pair (k ∈ Ccp)

and nk is the number of DOF in kth contact pair N ← R/L R ← N Calculate constraint
modes Eq. (94) Apply Guyan reduction to the system matrices: M ←ΨTMΨ, K ←ΨTKΨ

Algorithm 1. DOF selection based on Henshell and Ong method

[1] Calculate Φk i = 1 to i = nR − nN A ← ΦT
kΦk E ← ΦkA−1ΦT

k Find q1 such that eq1q1 =
min
j∈R

ejj

L← {q1, . . . , qnk
} where q’s are the DOF associated with the kth contact pair (k ∈ Ccp) and nk

is the number of DOF in kth contact pair N ← R/L R ← N Delete rows of Φk corresponding
to the DOF in L

Algorithm 2. DOF selection based on EIDV method

According to Refs.,151,152 the sequential elimination method by Henshell and Ong123 tends to
keep λs,min high, as it eliminates the DOF associated with the highest constrained frequency
at each iteration as the slave DOF. Namely after the elimination procedure, if the chosen
master DOF are all fixed, the system is left with the DOF that were chosen as the slave
DOF that were identified to have the highest constrained frequency at each elimination
process. Thus the resulting system with all the master DOF fixed tends to have a larger
λs,min than that calculated with systems with other possible combinations of master DOF
fixed. The Henshell and Ong’s method that is adapted specifically for this problem is shown
in Algorithm 1. First, at each iteration, the ratios of the diagonal terms of the stiffness matrix
kjj to the diagonal terms of the mass matrix mjj are calculated for ∀j ∈ R, and the index q1
that gives the maximum ratio among j ∈ R is obtained. Next, the set L is updated such that
it contains q1, and all the other DOF that are associated with the contact pair k ∈ Ccp to
which the q1th DOF belongs, e.g., the DOF that are perpendicular to the normal direction.
The set N is then updated such that it excludes the selected DOF of L from R, and the
set R is re-defined as N . A constraint mode is calculated by solving a problem where a unit
displacement is applied to a DOF in N whereas all the other DOF in N being fixed. This is
repeated for all DOF in N , resulting in the following matrix:

Ψ = ⎛⎜⎝ I−(Kll)−1Kln

⎞⎟⎠ (94)

where Ψ is the matrix of constraint modes for all DOF in N . The Guyan reduction is then
applied to the mass and stiffness matrices. The iteration continues until the number of DOF
in N reaches the specified value of nN using Ψ.

In order to clarify the appropriateness of the algorithm in Algorithm 1 to this problem,
another algorithm for selecting DOF is shown here for comparison. The method of effec-
tive independence vector, or the EIDV method developed by Kammer,140 is a method to
choose the sensor placement locations for the vibration measurement of large scale structures.
The method aims to make the measured eigenvectors as linearly independent as possible.
According to Penny et al.,139 many of the criteria for choosing the master DOF for model
order reduction have similar criteria for choosing measurement locations in a way such that

107



the lower frequency modes can be captured accurately. In fact, as examined by Penny et al.,
both the Henshell and Ong method and the EIDV method produce acceptable selections
in most cases, in a sub-optimal manner. The DOF selection algorithm based on the EIDV
method is shown as Algorithm 2. First, the eigenvalue problem Eq. (88) is solved for the
first k modes, and the associated modal matrix is designated as Φk = (φ1,φ2, . . . ,φk), or
KΦk = MΦkΛk where Λk = diagj=1,...,k ((ω2

o)j). The Fisher information matrix A is then
calculated as A = ΦT

kΦk, and an idempotent matrix E is computed as E = ΦkA−1ΦT
k , the

diagonal of which is called the independence distribution vector (see Ref.140 for detailed for-
mulations.) The least contributing DOF to the independence of the modes among the ones
in R is identified as the one with the smallest diagonal element in E. The associated DOF are
also identified and stored in L, and both N and R are updated as in the Henshell and Ong
method. Finally the rows of Ψk corresponding to the DOF in L are deleted. The iteration
continues until the size of N reaches the desired number nN .

Although the EIDV method shares similar objective for choosing DOF with the Henshell and
Ong method, the objective of the EIDV method is not exactly the maximization problem of
Eq. (90). Therefore it is expected that the Henshell and Ong method returns better solutions
to the given maximization problem than the EIDV method, as it is shown in the next section.

8.3 Case study

In section 8.2, the method to select the nonlinear DOF has been introduced. In this section,
the validity and applicability of the method are discussed by applying the algorithm to an
example problem. With the case study, the validity of the proposed method is discussed in
terms of the bilinear frequencies and forced response. Furthermore a metric to assess their
accuracy is introduced and examined.

8.3.1 Simple cracked plate model

Problem description A cantilevered cracked plate model was constructed with Young’s mod-
ulus E = 2.0× 1011 Pa, Poisson’s ratio ν = 0.3, and density ρ = 7800 kg/m3, and its geometry
is shown as Fig. 40(a) where w = 6.0 × 10−3m, l = 6.0 × 10−2m, h = 1.5 × 10−1m, lc/l = 0.625,
and hc/h = 0.475. The model was discretized with 5,120 linear solid elements and resulted in
mass and stiffness matrices with 18,630 DOF. On the crack surfaces as shown in Fig. 40(b),
there are 180 nodes, or 90 contact pairs on the surfaces hence the number of the associated
DOF is 540. The CMS method shown in the section 8.2.1 was then applied to the FE model,
and it resulted in the 681 DOF (3.6% of the original size) system consisting of 621 physical
DOF and 60 modal coordinates corresponding to the free-interface normal modes. With this
reduced order model, both algorithms in Figs. 1 and 2 were applied for nN =4, 8, 16, 32, 64,
and 128. For the EIDV method, the first four modes were considered.

In order to compare these results with an “intuitive” selection method, a selection criteria
was also employed, where the nonlinear DOF were chosen based on the amount of penetration
between the nodes in a contact pair for the modes of interest, which in this case is the fourth
mode. Namely, it was hoped that penalizing the inter-penetration of the most penetrating
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(a) (b)

Fig. 40. Cantilevered cracked plate model: (a) FE model, (b) Magnified crack surface

(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs) (c) nN = 16 (8 pairs)

(d) nN = 32 (16 pairs) (e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Fig. 41. Selected nodes by an intuitive approach (left edge open)

(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs) (c) nN = 16 (8 pairs)

(d) nN = 32 (16 pairs) (e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Fig. 42. Selected nodes by EIDV method (left edge open)

contact pairs would produce the “stiffest” system response. The selected node pattern with
such criterion is shown as Fig. 41, and the results of the EIDV method and the Henshell and
Ong method are shown as Figs. 42 and 43. As can be seen in Fig. 41, if the nodes are chosen
based on the amount of penetration, the selection starts from the nodes near the crack edge
(open side) for nN = 4, and it then proceeds toward the tip of the crack (closed side) as nN
increases. It makes sense because the motion of the crack surfaces is significant near the open
edge than that near the closed edge. On the other hand with the EIDV method, the method
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(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs) (c) nN = 16 (8 pairs)

(d) nN = 32 (16 pairs) (e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Fig. 43. Selected nodes by the modified Henshell and Ong method (left edge open)
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(a) Henshell and Ong method (linear)
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(b) Henshell and Ong method (nonlin-
ear)
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(c) EIDV method (nonlinear)
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(d) Intuitive approach (nonlinear)

Fig. 44. Results of forced response analysis of the cracked plate

also starts to select the nodes near the crack edge, but it tends to choose more nodes on the
crack rims than the nodes near the crack edge as shown in Fig. 42. Finally with the Henshell
and Ong method, it also select the nodes near the crack edge first, for nN = 4, but it then
tends to select the nodes over the crack surface in a more distributed manner as can be seen
in Fig. 43.

Forced Response Analysis Next, in order to see the influence of the application of the nonlin-
ear B.C. onto the selected nodes on an NNM frequency, forced response analysis was carried
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out by applying an external harmonic loading to the cracked plate. As one might notice,
when the forced response of this structure with a crack is considered, the repetitive opening
and closing of the crack faces must be treated appropriately with contact algorithms. As a
result, the vibration is nonlinear and the steady-state response of the displacement may not
be expressed as a harmonic function even if the external force is a harmonic function. There-
fore in this study, the steady-state response was obtained by assuming that the displacement
can be expressed as a truncated Fourier series, and the nonlinear boundary condition can
be enforced by the penalty method.116 The method is called the hybrid frequency-time do-
main method,104,149 which is based on the concept of harmonic balance method.107 Detailed
formulation of the method is omitted in this paper.

It is noted that the system matrices were further reduced by the application of Eq. (76) to
the reduced-order model before the forced response calculation, by keeping the selected node
pairs as the active DOF and condensing out the other DOF including physical and modal
coordinates. For example, with nN = 64 (32 pairs), the system size was reduced down to
155 DOF, which is 0.83% of the original system size.

A harmonic forcing of magnitude 3 N was then applied at the tip of the plate, in order
to excite the first vibration mode, which corresponds to the first out-of-plance bending
mode. The forced response was calculated for both linear case, i.e., with the open B.C., and
nonlinear case with the nonlinear boundary conditions imposed on N with the selections
by the Henshell and Ong method. The results are shown in Figs. 44(a) and 44(b). As can
be seen in Fig 44(a), the selection pattern does not alter the linear forced response. This is
because the selection of the active DOF does not alter the eigenvalues of the reduced order
model, and it was assumed that the system was completely linear when the forced response
was calculated. On the other hand, the number of contact pairs greatly affects the results of
nonlinear forced response as shown in Fig. 44(b). One may observe that the response with
64 contact pairs is almost identical to that with the full set of 90 contact pairs, which implies
that for accurately calculating the nonlinear resonant frequencies, it may not be necessary
to enforce nonlinear boundary conditions for all the contact pairs on the crack faces. The
same forced response calculations were carried out with the node patterns selected by the
EIDV method and the method based on the amount of penetration, and they are respectively
shown in Figs. 44(c) and 44(d). As can be seen in Fig. 44(c), the results with the patterns
chosen by the EIDV method are comparable with the ones produced by the Henshell and
Ong method. On the other hand as can be seen in Fig. 44(d), the forced response with the
node patterns chosen by the “intuitive” approach produced worse results than the other two
methods, i.e., for a given number of nN , the predicted resonant frequency by the approach
is lower than that calculated by the other methods. This is the most visible in the results
for nN = 64, for which both the Henshell and Ong method and the EIDV methods produced
results that are almost identical to the results for nN = 90.
Bilinear Frequency Approximation Finally, the influence of the selected node pattern on the
bilinear frequencies is discussed. The first four bilinear frequencies were calculated for the
model with the selected node patterns with the three methods, and the results are shown in
Fig. 45. The first four modes correspond to the first out-of-plane bending, the first torsion,
the second out-of-plane bending, and the first in-plane bending modes respectively. The plots
in Fig. 45 show the percentage errors in the bilinear frequency versus the number of contact
pairs, where the error is defined as the ratio of the difference between the bilinear frequency
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Fig. 45. Errors in the first four bilinear frequencies:(a) NNM 1, (b) NNM 2, (c) NNM 3, (d) NNM
4

with the sampled contact pairs and that with the full set of contact pairs, to that with the
full set of contact pairs. As can be seen, the Henshell and Ong method consistently provides
the best results among all the methods for the first four modes. Moreover, it shows the best
convergence rate in terms of the number of contact pairs.

A posteriori accuracy assessment

As seen above, even though the intuitive approach chooses the contact pairs that show the
most penetration, application of the nonlinear boundary conditions to these nodes does not
result in the “stiffest” vibration response. To be specific, the Henshell and Ong method and
the EIDV method produced the node patterns that yield the closer results to the reference
results in terms of forced response and bilinear frequencies, than the patterns chosen by the
intuitive approach. In particular, the Henshell and Ong method iteratively aims to solve the
maximization problem Eq. (90) in a sub-optimal manner. Therefore the bilinear frequencies
as well as the resonant frequencies were well approximated with the nodes chosen by the
Henshell and Ong method. In order to better understand the governing factor for the accuracy
of the results, a more physical interpretation of the results is provided here. Namely, the key
effect for achieving the good approximation of the NNM frequency is to ensure, as much as
possible, the non-penetrability condition on the contact pairs where the nonlinear B.C.s’ are
not applied. The penetration should be evaluated during a vibration cycle, thus both the
depth and the duration of the penetration should be taken into account. These quantities
vary in space, and depend on the frequency of vibration. Hence as a metric to characterize
not only the amount but also the duration of penetration over the entire crack surfaces for
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(a) nN = 16 (8 pair)
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(b) nN = 64 (32 pair)

Fig. 46. Virtual impulse for a period of vibration for NNM 1
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(b) nN = 64 (32 pair)

Fig. 47. Virtual impulse for a period of vibration for NNM 4

a given vibration frequency, the following quantity is introduced:

F̂ =∫ T

0
(∫

ΓA(ΓB)
keup(r, t)dΓ)dt (95)

where F̂ is a quantity with the dimension of impulse named “virtual impulse”, ke is an
equivalent spring constant per unit length determined by the ratio between the Young’s
modulus multiplied by the characteristic area and the characteristic length, up is the amount
of penetration along the surface normals, and T is the period of vibration associated with
the NNM frequency. The quantity F̂ is calculated based on the calculated time trajectory
of displacements of the nodes on the crack surfaces, and can be thought of as an impulse
that does not contribute to the system response, as this impulse is not applied to the system
when the response is calculated. In other words, the smaller the value of F̂ is, the stricter
the boundary conditions are imposed on the nodes over the entire crack surfaces.

First, the forced response analysis was carried out, and the corresponding time history of up
over the entire crack surface was recovered from the vibration response. The integrals in the
Eq. (95) were then evaluated by a simple quadrature rule both in space and time. The metric
was calculated for the first and the fourth modes for 8 and 32 pairs chosen by the methods,
and the results are shown in Figs. 46 and 47. As can be seen in Figs. 46 and 47, the virtual
impulse varies over the frequency range. In particular, when the frequency of excitation is
close to the resonant frequency, or the NNM frequency, then the amount of penetration
increases as well. However for all cases, the Henshell and Ong method consistently results
in the smallest impulse over the frequency range among the three methods considered. It
means that the nonlinear B.C. on the crack faces is the most strictly enforced by the node
patterns chosen by the Henshell and Ong method.
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.

9 NODE SAMPLING FORNONLINEARVIBRATION ANALYSIS OF STRUC-
TURES WITH INTERMITTENT CONTACT
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Vibration problems of structures with intermittent contact have been studied extensively for
several decades. These problems have practical importance and feature theoretical complex-
ity due to their nonlinear nature. A numerical modeling procedure for such problems based
on the finite element (FE) method is presented in this paper. This work is motivated by
a need for developing a model-based crack detection algorithm of elastic structures based
on their spectral properties, such as resonant frequencies and response shapes. In order to
properly predict the resonant frequencies of such structures, one has to consider the nonlin-
earity caused by intermittent contact at the cracks; the so-called closing crack or breathing
crack effect. This nonlinearity has hindered analysts from accurately calculating the res-
onant frequencies of cracked structures, because they cannot be calculated from classical
linear modal analysis. Recently, sophisticated contact algorithms have been developed, such
as the penalty method116 and the augmented Lagrangian method.117 Hence, the accuracy
of the results of time transient simulations with FE models involving intermittent contact
has been improved. Furthermore, studying vibration problems of such structures with an
FE model with a realistic complexity is becoming feasible with the aid of high-performance
computers. However, in turn, due to the advancement of these technologies, analysts tend to
create models with increasingly larger number of degrees of freedom (DOF). This is based
on the expectation that, as the models become more realistic and the results become more
accurate, the problem can still be solved in a reasonable amount of time. However, the
number of DOF required for high-fidelity predictions currently overwhelms even the most
advanced hardware and software. That is because, as the model complexity increases, the
cost of solving contact problems increases dramatically, even when the potential contact ar-
eas are known a priori. This occurs even if one uses reduced order modeling techniques, such
as the Craig-Bampton method.118 For forced response vibration problems of such structures,
one can use accurate and efficient semi-analytical methods such as the ones based on the
harmonic balance method (e.g., Ref.107), by representing the steady-state dynamic response
of the model with a truncated Fourier series. However, such methods still suffer from the
increase of computational cost as they require a fair number of harmonics to be included
in the Fourier transform, to obtain an accurate result. Therefore, the goal of this paper is
to present a new and efficient reduced order modeling framework for vibration problems of
elastic structures involving intermittent contact, with particular attention to modeling non-
linear vibration of cracked structures. The reduced order model is constructed such that it
can be used in conjunction with standard contact algorithms, such as Lagrange’s multipliers,
penalty methods, and augmented Lagrangian methods. The focus is placed upon reducing
the number of DOF involved in the contact regions, in an automatic manner.

This paper is organized as follows. In section 9.1, a literature survey over the related fields
is provided. In section 9.2, the proposed modeling framework is presented, including the
reduced order modeling approach and contact DOF selection method. As applications of the
method, two case studies are shown in section 9.3, using FE models of a cantilevered cracked
plate and an academic blade model.

9.1 Background

The issues of reducing and selecting DOF of FE models have been extensively studied by var-
ious methods and distinct perspectives, such as the reduction of the interface DOF between
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substructures, selection of master DOF for Guyan reduction,119 optimal sensor placement,
and optimal constraint locations. However, many of the available methods share similar goals
and relate to each other (as described below).

Firstly, the issue of reducing the number of interface DOF between the components has
been studied by several researchers. Brahmi et al.120 proposed a method to be employed
before the assembly of substructures in component-based modeling methods, where basis
vectors are chosen based on the combination of secondary modal analysis of the interface
DOF partitions of the matrices, and the truncation of modes based on the singular value
decomposition. Balmés121 introduced the framework for generalizing interface DOF such as
constraint modes, by considering the new basis representing the actual interface displace-
ments. Castanier et al.122 also proposed a technique based on applying modal analysis and
mode truncation to the constraint mode partition of the matrices produced by component
mode synthesis (CMS).118 The resulting modes are transformed back into the FE coordinates
and are called characteristic constraint modes. All of these methods achieve a reduction in
the number of interface DOF. However, they do not provide any criteria as to how the in-
terface DOF need be selected automatically (or even manually) for accurately enforcing the
boundary conditions in the areas of intermittent contact.

Secondly, the selection of master DOF is a crucial factor for determining the spectral prop-
erties of reduced order models obtained by using Guyan reduction. Hence, many algorithms
for the selection of the master DOF have been developed. These methods are relevant to our
objective because they produce results that often solve the optimization problem considered
in this study (as discussed in section 9.2). An automatic master DOF selection algorithm
was first proposed by Henshell and Ong,123 in which the master DOF are chosen where the
inertia is high and the stiffness is low, whereas the slave DOF are chosen where the inertia
is low and the stiffness is high. This process can be automated by examining the radian
frequency ωs defined by fixing all DOF except the DOF index s. Namely, ωs ≜ √kss/mss, for
s = 1, . . . , n, where kij and mij are the entries at the ith row and jth column in FE stiffness
and mass matrices of size n. The index s with the largest ωs is identified at each iteration
step, and the DOF is eliminated by an application of Guyan reduction with s being the slave
DOF and all the other DOF being the master DOF. This process can be repeated until the
number of master DOF reaches the desired magnitude. An approach similar to this algorithm
was proposed by Shah and Raymund124 based on the discussion of Kidder and Flax,125–127

where the number of master DOF is controlled by iteratively eliminating the DOF whose ωs
is larger than a pre-defined cut-off frequency ωc (that is chosen to be approximately three
times the highest significant frequency in the frequency range of interest). Independently
from the work by Henshell and Ong, Grinenko and Mokeev128 developed an order reduction
technique named frequency-dynamic condensation, which also uses a criterion to select mas-
ter degree of freedom. Although their criterion was legitimate, the implementation of the
selection algorithm still suffers from tedious exhaustive-search calculations for selecting the
master DOF. The selection method proposed by Matta129 also uses the ratio kss/mss with a
criterion similar to that proposed by Henshell and Ong. This method can be applied not only
to Guyan reduction but also to CMS, where both static and normal modes are used as basis
vectors, onto which the system dynamics are projected. A method proposed by Bouhaddi
and Fillod130 uses a different concept, where if a DOF a is a node of the ith eigenmode,
then fixing the DOF a results in λ̂i−1 = λi, where λi is the ith eigenvalue of the non-fixed
system, and λ̂i−1 is the eigenvalue of the system with the DOF a fixed. This concept may be
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understood using a vibration problem of a string with both ends fixed. That is, the lowest
natural frequency of the string with a single support becomes the highest if the support is
placed at the node of the second mode of vibration.131 This is because the first mode with
the constraint becomes identical to the second mode of the unconstrained string, which has
the eigenvalue as the feasible upper bound of the first eigenvalue with a single constraint.
It is noteworthy that Bouhaddi and Fillod explicitly aimed for maximizing the minimum
eigenvalue of the system where all the master DOF are fixed. This concept will be revisited
in section 9.2.3.

The methods for the node selection reviewed above are based on Henshell and Ong method to
some extent. Another class of methods is based on the concept of modal energy. For example,
the method proposed by Kim and Choi132 uses the energy distribution among the DOF for
each mode, and chooses the set of primary DOF by taking the partial sum over the rows
of the energy distribution matrix. The method proposed by Cho and Kim133 utilizes energy
estimation at discretization element level by the Rayleigh quotient value of each element. Kim
and Cho then proposed a selection method consisting of two steps:134 model order reduction
by improved reduced system (IRS)135 using the master DOF selected via the method based on
energy estimation of each element,133 and subsequent sequential elimination method123 with
an iterative IRS. Another automatic DOF selection method named modal energy selection
method proposed by Li136 uses a metric called index of classification, which is based on the
approximate modal energy associated with each DOF. The method was successfully applied
to an FE model of a cantilever beam. Oh and Park137 also proposed a criterion for selecting
the master DOF based on singular values of the modal matrix. However, that approach
suffers from the computational cost due to exhaustive search over the possible master DOF
sets, and depends on engineer’s knowledge and intuition.

Thirdly, a similar but slightly different issue is the selection of measurement locations for
vibration testing. For example, one may need to measure vibration displacements of a struc-
ture to determine vibration modes, typically with a limited number of sensors and limited
locations where the sensors can be placed. Thus, one may like to maximize the information
one can obtain with the limited number of sensors and locations. However the question arises
as to how the sensors need to be located, since the optimal configuration of sensors for such
objective cannot be easily determined. There have been many methods developed to date
for achieving this goal. In particular, one class of approach is based on information theory.
These approaches determine the sensor locations by optimizing the norm of the Fisher in-
formation matrix.138 Among them, one of the most widely used techniques is the effective
independence vector method, or the EIDV139 method developed by Kammer.140 The method
determines the placement of sensors within the candidate locations while maintaining as
much independent information as possible, i.e., maintaining the measured mode shapes as
independent as possible. Therefore, it is natural to hypothesize that the application of the
nonlinear boundary conditions to the optimum sensor locations would also well represent the
full order model where the boundary conditions are applied at all locations in the intermit-
tent contact region. This method is considered in this study and the associated formulation
is discussed in detail in section 9.2.3.

Lastly, the issue of finding the optimal constraint locations to maximize the fundamental
natural frequency of a structure is considered. This issue has an important relationship with
the optimal master DOF selection. For instance, suppose one wants to increase as much as
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possible the lowest natural frequency of a structure, by adding a finite number of supports or
kinematical constraints to the structure. However, the problem of finding the optimal number
and the locations of such supports is not as easy as it appears. Therefore, it may be necessary
to apply computationally expensive optimization algorithms, such as done in the work by
Zhu and Zhang.141 In contrast, Åkesson and Olhoff142 studied the problem by applying the
Courant’s maximum-minimum principle. Namely, if there is a discrete dynamical system
of size n, and there are r (< n) kinematical constraints applied to the system, then all
the eigenvalues of the structure increase, and the increased eigenvalues are bounded by the
following formula

λ0
i ⩽ λi ⩽ λ0

i+r, i ∈ {1,2, . . . , n}, (96)

where λ0
i and λ0

i+r denote the ith and (i+ r)th eigenvalues of the structure without the con-
straints, and λi is the ith eigenvalue of the constrained structure. Also based on the same
principle and the findings of Szelag and Mroz,143 Won and Park144 applied a minimization
method to obtain the optimal support location and achieve the maximum fundamental natu-
ral frequency of a cantilevered plate. They showed that the optimal support locations should
be on the nodal lines of the (r + 1)th mode of the unconstrained structure. It is noted that
this result conforms to the vibration problem of a fixed string mentioned above. This method
was successfully applied to their specific examples, but the method can be applied only to
special cases where the potentially-constrained region is the entire region of the structure and
the points on the nodal lines can be selected. Namely, if the regions to which the constraints
are applied are limited to some specific regions of the structure, then the nodal lines may
not exist in such regions, and the minimization problem becomes more complicated.

It is interesting to note that the idea of constraining the nodal lines was used to optimally
select the master DOF for Guyan reduction by Bouhaddi and Fillod,130 but they were not
aware of the applicability of their method to optimally select the support positions, while
Won and Park144 were not aware of the applicability of their method to optimally select
the master DOF locations for Guyan reduction. In this paper, we take advantage of this
similarity between the optimal master DOF selections and the constraint locations, in order
to achieve the optimal selection of the DOF where the nonlinear boundary conditions are
applied.

9.2 Mathematical Formulation

Consider the small vibrations of an elastic structure represented as Ω with a fixed boundary
Γf , where the structure may involve intermittent contact at ΓA and ΓB during the vibration
cycles, such as shown in Fig. 48. Namely the boundaries open and close. Thus, the vibration
problem is nonlinear because the condition for the boundaries to be in contact is dependent on
the displacement field itself. That is, the boundary conditions at ΓA and ΓB are nonlinear. It
is well known that the system eigenvectors and eigen-frequencies are different from the actual
response shapes and resonant frequencies of this nonlinear structure. In this paper, they are
respectively referred to as the nonlinear normal modes (NNMs) and NNM frequencies, as
was also done in Ref..114

If the structure is discretized with a method such as an FE method, the nonlinearity asso-
ciated with the contact is localized, in the sense that the nonlinearity is caused only by a
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Fig. 48. An elastic structure with potentially contacting boundaries

small portion of the entire structure. In the following formulations, a set of indices of DOF
in such region is denoted as B (boundary), whereas a set of indices of the DOF in the rest
of the regions is denoted as I (internal), and partitions of vectors and matrices associated
with these sets are designated with subscripts b and i. The sizes of the sets are denoted as∣B∣ = nB and ∣I ∣ = nI . All the other DOF sets defined hereinafter follow the same notation.

Consider that the FE mass and stiffness matrices are denoted byM ∈ Rn×n andK ∈ Rn×n, and
the nodal displacement vector is given by x ∈ Rn. The governing equations of the vibration
problem with the absence of external forcing and damping may be written in a partitioned
matrix-vector form as follows

⎛⎜⎝Mbb Mbi

Mib Mii

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ẍb

ẍi

⎤⎥⎥⎥⎥⎥⎦ +
⎛⎜⎝Kbb Kbi

Kib Kii

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
xb

xi

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
fb(xb)
0

⎤⎥⎥⎥⎥⎥⎦ , (97)

where ( ˙ ) denotes a time derivative, and fb ∈ RnB denotes the nonlinear force associated
with the intermittent contact.

When dealing with this type of nonlinear vibration problems, one can apply linear reduced
order modeling techniques, such as Guyan reduction,119 system equivalent reduction ex-
pansion process (SEREP),145 iterated improved reduced system (IIRS),146,147 or component
mode synthesis (CMS).118 With such methods, one can obtain smaller system matrices by
reducing the size of xi by means of Rayleigh-Ritz coordinate transformation comprising of
various basis vectors such as static deformations and vibration modes, yet keeping the ac-
cessibility to the physical coordinates of xb. For instance, with the help of CMS, one can
obtain a system with desired spectral properties and accessibility to xb, the size of which is
as small as nB DOF plus the number of linear normal modes whose frequencies lie in the
frequency ranges of interest. The use of such linear reduced order modeling methods greatly
helps analyze the dynamic response of systems with localized nonlinearities, such as tran-
sient dynamic analysis,148 and nonlinear harmonic response analysis.153 However, even with
these reduced order modeling methods, if the number of DOF involved in the b partition
becomes large (especially the cases with very fine mesh in the contacting regions) one cannot
take advantage of the linear reduced order modeling techniques as the computational cost
associated with the nonlinear dynamic analysis typically grows as the number of DOF in the
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b partition increases. Furthermore, if one simply attempts to eliminate some of the DOF in
the b partition, it results in inaccurate, or even wrong results. Therefore, to obtain accurate
computational results, one needs to keep as many boundary DOF as possible. That can easily
result in prohibitively costly calculations. Typically, as a workaround to avoid the inaccurate
results due to the lack of sufficient DOF considered and at the same time to obtain efficient
computational model, one has to select the DOF in a heuristic way, which greatly depends
on the system characteristics and analyst’s experience and intuition. Moreover, if the model
is developed in such ways, the error in the analysis results cannot be estimated a priori. Our
aim here is to develop an automatic way to select the DOF in B for a desired number of
DOF to be selected.

Note that the major assumptions made in the proposed methodology are typical for such
approaches, and can be summarized as follows.

(1) The elastic structure is fixed in space, and the strain due to its vibration is infinitesimally
small. Also, the nonlinearity comes purely from the intermittent contact at the contact
surfaces, and it is localized. Other nonlinearities, such as large deformations or material
nonlinearities are not considered.

(2) Contact surfaces ΓA and ΓB are invariant in time, and meshed as needed to ensure
enough accuracy. Hence, the computational mesh is very fine and the computational
cost for solving the vibration problem involving the intermittent contact is prohibitively
expensive. Therefore, the computational nodes have to be sampled, such that the re-
sultingmodel has enough accuracy, yet the computational cost of using this model is as
low as possible.

9.2.1 Primary Model Reduction

To reduce the number of DOF included in I and make the subsequent development more
efficient, a model reduction is first applied to Eq. (97). Namely, I is divided into two sets,
i.e., I = O∪D, where O is a set of DOF indices associated with the nodes to be directly used
in the structural analysis, and D is the rest of DOF indices in I, which is to be apparently
deleted from the system by the reduction methods. In addition, a set of DOF indices to be
used as the master DOF is defined as active DOF, designated as A, and A = B ∪O.

Next, consider an eigenvalue problem associated with Eq. (97), where the eigenvalue λ and
the corresponding eigenvector φ must satisfy

⎛⎜⎝Kaa Kad

Kda Kdd

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
φa

φd

⎤⎥⎥⎥⎥⎥⎦ = λ
⎛⎜⎝Maa Mad

Mda Mdd

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
φa

φd

⎤⎥⎥⎥⎥⎥⎦ , (98)

where φ = [φT
a ,φ

T
d ]T. In this study, a mixed-boundary CMS of Hintz-Herting98,99 is chosen

for the primary model reduction. Namely, without the presence of rigid body modes, the
coordinate transformation is defined as⎡⎢⎢⎢⎢⎢⎣

xa

xd

⎤⎥⎥⎥⎥⎥⎦ =Hη = (Ψ Φ̂)⎡⎢⎢⎢⎢⎢⎣
ηa

ηm

⎤⎥⎥⎥⎥⎥⎦ , (99)
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Fig. 49. Schematic of the node sampling: ●, selected node (N)

where xa = ηa, ηm is a vector of modal coordinates, Ψ and Φ̂ are so-called constraint modes
and truncated free-interface normal modes in a modified form, which are respectively defined
as

Ψ = ⎛⎜⎝ I−K−1ddKda

⎞⎟⎠ , (100)

Φ̂ = ⎛⎜⎝ 0

Φd +K−1ddKdaΦa

⎞⎟⎠ , (101)

andΦ = [φ(1),φ(2), . . . ,φ(k)], k < n, each subscript in parentheses denoting the corresponding
mode number. Using the transformation defined in Eq. (99), the projected eigenvalue problem
is obtained as

KHη = μMHη, (102)

where MH = HTMH and KH = HTKH. It should be noted that the projected eigen-
value problem Eq. (102) possesses at least the same eigenvalues of the original systems,
i.e., λ(1), λ(2), . . . λ(nm) although the indices may be different from the ones for the projected

system. This is because the subspace spanned by the columns of (Ψ, Φ̂) contains the eigen-
vectors of Eq. (98), i.e., φ(j) ∈ span(Ψ, Φ̂) for j = 1, . . . nm, as span(Ψ, Φ̂) = span(Ψ,Φ).
Hence, the projected eigenvalue problem has the same eigenvalues as the original ones. It
means that, the eigenvalues of the projected system Eq. (102) does not contain any error in
the eigenvalues and eigenvectors computed to those of the original eigenvalue problem of the
FE model. Although this advantage comes with the expense of calculating the eigenvalues
and eigenvectors of the full FE model, it is not a major drawback considering that the com-
putational cost involved in the nonlinear computations with the original FE would be much
more expensive than calculating a few normal modes of the full FE model.

9.2.2 Nonlinear DOF sampling

With the reduced order model obtained as discussed in section 9.2.1, the next step is to select
the DOF in B such that the nonlinear characteristics of the system can be well approximated
by applying the nonlinear boundary conditions only at the selected DOF.

As mentioned, accurately calculating the NNM frequencies is of primary interest of this
study. The NNM frequencies of the system can be obtained in several ways, such as by
time integration of Eq. (97) for harmonic loading, or by usingharmonic-balance-based fre-
quency/time domain analysis.149,153 It was shown by the authors that the NNM frequencies
for cracked plates obtained by the nonlinear harmonic response analysis can be well approx-
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imated by the application of bilinear frequency approximation even when the crack surfaces
involve multiple DOF.154 Therefore, as a measure to evaluate the results obtained with the
selected DOF, bilinear frequency is used in the following development. Namely, the ith NNM
frequency ωni can be approximated by a bilinear frequency ωbi defined as

ωbi = 2ωoωs
ωo + ωs (103)

where ωo and ωs are the natural frequencies of the corresponding linear systems, which can
be respectively obtained by solving the following eigenvalue problems

KHη = (ω2
o)MHη, subject to open B.C.’s, (104)

KHη = (ω2
s)MHη, subject to sliding B.C.’s. (105)

The open B.C. is a boundary condition where no constraint is imposed on the nodes on ΓA
and ΓB, or the DOF in B. Thus, in fact Eq. (104) is identical to Eq. (102). On the other hand
for the sliding B.C., it is assumed that ΓA can freely slide with respect to ΓB but cannot
separate along the local normal direction described as follows.

A contact pair is defined as a pair of nodes on ΓA and ΓB, which may be in contact during
the vibration. A set of numbers denoting all the contact pairs is defined as Ccp. For the jth
contact pair in Ccp, three mutually perpendicular normal vectors at a node on ΓA are defined
as nj1, n

j
2, and nj3, where n

j
1 is the normal vector pointing outward from the surface, nj2 and nj3

are unit vectors that are tangent to the surface and perpendicular to each other. Using these
vectors, a coordinate transformation matrix Pj

A = (nj1,nj2,nj3) is defined for each contact
pair with the assumption that a nodal displacement vector contains only translational DOF,
such that the x1 component of the displacement vector of the node is aligned with ni1 and
points outward from the surface. For the other node of the jth contact pair on ΓB, the
corresponding coordinate transformation matrix that aligns the x1 component of the nodal
displacement vector with the normal vector is defined as Pj

B = −Pj
A. Assembling Pj

A and Pj
B

for all j ∈ Ccp, a coordinate transformation is defined as

P = ⎛⎜⎜⎜⎜⎝
Pb 0 0

0 Io 0

0 0 Im

⎞⎟⎟⎟⎟⎠ , where Pb = nCcp

A
j=1
(Pj

A,P
j
B), (106)

and A is an assembly operator, Pb ∈ RnB×nB , Io ∈ RnO×nO , and Im ∈ RnM×nM . Next, for the
jth contact pair, the x1 components of the nodal displacement vectors, which are denoted as
ηjA and ηjB, are transformed to a relative displacement uj ≜ (ηjA+ηjB)/√2 and a displacement

vj ≜ (ηjA − ηjB)/√2. Namely, denoting the set of DOF corresponding to ujA and ujB for all jth
contact pair, one obtains ⎡⎢⎢⎢⎢⎢⎣

uj

vj

⎤⎥⎥⎥⎥⎥⎦ =
1√
2

⎛⎜⎝1 1

1 −1
⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ηjA

ηjB

⎤⎥⎥⎥⎥⎥⎦ . (107)

Now by defining X, Y , and Z (X ∪ Y ∪ Z = B and nX = nY = nZ = nCcp), the sets that
respectively contain sets of indices of the DOF corresponding to x1, x2, and x3 for all j ∈ Ccp,
and denoting the coefficient matrix in the Eq. (107) as Rj, one can define a transformation
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matrix R by assembling Rj for j ∈ Ccp as follows
R = ⎛⎜⎝Rx 0

0 I

⎞⎟⎠ , where Rx = nCcp

A
j=1
(Rj), (108)

and Rx ∈ RnX×nX . Since P−1 = PT and R−1 = RT, the eigenvalue problem Eq. (102) can be
transformed to

Kq = (ω2
o)Mq, (109)

where η = PRq, M = (PR)TMHPR, and K = (PR)TKHPR. Next, note that q can be
partitioned into q = [qr,qg] where qr is the vector of relative DOF, or uj(∀j ∈ Ccp) and qg
is the generalized internal DOF containing vj(∀j ∈ Ccp), the x2 and x3 components of the
nodal displacement vectors of the nodes of the contact pairs, displacement vectors of the
observer nodes, and the modal coordinates. That is, Eq. (109) can be written as

⎛⎜⎝Krr Krg

Kgr Kgg

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
qr

qg

⎤⎥⎥⎥⎥⎥⎦ = (ω2
o)⎛⎜⎝Mrr Mrg

Mgr Mgg

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
qr

qg

⎤⎥⎥⎥⎥⎥⎦ , (110)

where R ⊂X and G = (A/R) ∪M .

The best approximation to the NNM frequency can be obtained when the sliding boundary
conditions are imposed on all of the nodes on the surfaces ΓA and ΓB. Namely, the associated
eigenvalue problem with the sliding boundary conditions can be obtained by constraining all
the relative DOF, or qr = 0, i.e.,

Kggqg = (ω2
s)Mggqg. (111)

Next, we assume that we do not like to consider all nodes in R for the subsequent forced
response analysis due to the large number of DOF involved in R. In other words, the nodes
where the nonlinear boundary conditions are applied should be sampled, as illustrated in
Fig. 49. The selected DOF are designated as nonlinear DOF, and a set of indices of the
nonlinear DOF is denoted by N , where N ⊂ R. The rest of the DOF in R are designated as
linear DOF, and the associated set is denoted by L, where N ∪L = R. Therefore, the bilinear
frequency is calculated with ωs such that the sliding B.C. is applied only on the DOF in N ,
or qn = 0, i.e., ⎛⎜⎝Kll Klg

Kgl Kgg

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ql

qg

⎤⎥⎥⎥⎥⎥⎦ = (ω2
s)⎛⎜⎝Mll Mlg

Mgl Mgg

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ql

qg

⎤⎥⎥⎥⎥⎥⎦ . (112)

Considering that the natural frequencies of the system with the open boundary conditions,
ωo, are independent of both the number and the pattern of the selected DOF (recalling
that span(Ψc, Φ̂) contains the chosen eigenvectors), one can see from Eq. (103) that ωbi is
dependent only on ωs for a fixed ωo.

Next, considering the Rayleigh’s theorem of constraints defined by Eq. (96), it is known
that the system’s eigenvalues increase if a constraint is imposed on a system. Therefore,
as the number of constraints on Eq. (102) increases, ωs increases. Furthermore, ωbi is a
monotonically increasing function of ωs for a fixed ωo, because ∂ωbi/∂ωs = 2ω2

o/(ωo + ωs)2 ⩾ 0.
Hence one can conclude that the best approximation of ωbi for a given nN is obtained when
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the maximum ωs is achieved. Thus, a corresponding maximization problem is stated as
follows

max
N⊂R

ωs(N),
subject to ∣N ∣ = nN . (113)

This maximization problem may be solved by mathematical programming methods, such as
integer programming or topology optimization methods as was done in Ref..141 As it shall
be discussed next, this maximization problem can in fact be treated in a more efficient way
by the use of Guyan reduction and methods to choose the master DOF for reduced order
modeling techniques.

9.2.3 Automatic master DOF selection

The methods for automatically selecting the master DOF for Guyan reduction have been
previously developed.123,124,130 In particular, the method proposed by Henshell and Ong123

appears to be the most successful approach. Although it has been known to be computation-
ally expensive due to the nature of eliminating a single DOF per iteration and the need for
successive applications of Guyan reduction, this can be alleviated by the use of the primary
model reduction by CMS as developed in section 9.2.1. As was mentioned by Bouhaddi and
Fillod,130 and Shah and Raymund,124 the master DOF of Guyan reduction should be chosen
such that the valid eigenvalue range of the reduced order model is maximized. In general, it
has been known that the eigenvalue range of validity is bounded by the lowest eigenvalue of
the system with all the master DOF fixed. Here, this concept is applied to the problem of
finding the optimal N that solves Eq. (113). Namely, the corresponding eigenvalue problem
is Eq. (112) where qn is regarded as the master DOF. As was discussed in Ref.,150 the error
bounds in the ith eigenvalue of the reduced model produced by the Guyan reduction can be
obtained a priori by the following relationship

0 ⩽ εi ⩽ λi
λs,min − λi , (114)

where εi ≜ (λi−λi)/λi is the relative error in the ith eigenvalue, λi is the ith eigenvalue of the
reduced order model, λi is the ith eigenvalue of the original finite element model, and λs,min
is the smallest eigenvalue of the system with all the master DOF fixed. For λi/λs,min ≪ 1,
the upper bound asymptotically converges to the following value151

0 ⩽ εi ⩽ λi/λs,min. (115)

Therefore, it is apparent that maximizing λs,min results in minimizing the upper bound of
the error for all the eigenvalues of the reduced order model. Hence, this provides a guideline
for selecting the master DOF for Guyan reduction such that the errors in the eigenvalues of
the resulting reduced order model are minimized.

By observing this fact from another point of view, one may note that if a certain set of master
DOF can achieve the maximum λs,min, one can obtain not only an accurate reduced order
model that can well approximate the first few lowest eigenvalues of the original system, but
also (as a byproduct) a good estimate on the optimal constraint locations that maximize the
fundamental frequency. Recasting this to the original problem of selecting the optimal set N ,
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[1] i = 1 to i = nR − nN Calculate
√
kjj/mjj for j ∈ R Find q1 such that

√
kq1q1/mq1q1 =

max
j∈R

√
kjj/mjj

L← {q1, . . . , qnk
} where q’s are the DOF associated with the kth contact pair (k ∈ Ccp) and nk

is the number of DOF in the kth contact pair N ← R/L R ← N Calculate constraint modes
using Eq. (117) Apply Guyan reduction to the system matrices: M ←ΨTMΨ, K ←ΨTKΨ

Algorithm 3. DOF selection based on Henshell and Ong method

the error bounds given in Eq. (115) and associated with the eigenvalue problem Eq. (112)
are written as

0 ⩽ εi ⩽ (ω2
o)i(ω2

s)1 − (ω2
o)i , (116)

where εi ≜ [(ω̄2
o)i−(ω2

o)i]/(ω2
o)i, (ω̄2

o)i is the ith eigenvalue of a reduced order model, (ωs)1 is
the lowest natural frequency of Eq. (112). The corresponding maximization problem is given
by Eq. (113). Solving this problem for the lowest eigenvalue (ωs)1, one can expect that the
chosen nodes pattern is at least quasi-optimal.

According to Refs.,151,152 the sequential elimination method by Henshell and Ong123 tends to
keep λs,min high, as it eliminates the DOF associated with the highest constrained frequency
at each iteration as the slave DOF. Namely, after the elimination procedure, if the chosen
master DOF are all fixed, the system is left with the (slave) DOF that were identified to have
the highest constrained frequency at each elimination process. Thus, the resulting system
with all the master DOF fixed tends to have a larger λs,min than that calculated with systems
with other possible combinations of master DOF fixed.

The Henshell and Ong’s method that is adapted specifically for this problem is shown in
Algorithm 3. First, at each iteration, the ratios of the diagonal terms of the stiffness matrix
kjj to the diagonal terms of the mass matrix mjj are calculated for ∀j ∈ R. Next, the index
q1 that gives the maximum ratio among j ∈ R is obtained. Next, the set L is updated such
that it contains q1 and all the other DOF that are associated with the contact pair k ∈ Ccp to
which the q1th DOF belongs (e.g., the DOF that are perpendicular to the normal direction).
The set N is then updated such that it excludes the selected DOF of L from R, and the
set R is re-defined as N . A constraint mode is calculated by solving a problem where a unit
displacement is applied to a DOF in N whereas all the other DOF in N being fixed. This is
repeated for all DOF in N , resulting in the following matrix

Ψ = ⎛⎜⎝ I−(Kll)−1Kln

⎞⎟⎠ , (117)

where Ψ is the matrix of constraint modes for all DOF in N . Guyan reduction is then applied
to the mass and stiffness matrices. The iteration continues until the number of DOF in N
reaches the desired value for nN .

To demonstrate the performance of the proposed algorithm, another algorithm for selecting
DOF is shown here for comparison. The method of effective independence vector, or the EIDV
method developed by Kammer,140 is a method to choose the sensor placement locations for
the vibration measurement of large scale structures. The method aims to make the measured,
or sampled/truncated eigenvectors as linearly independent as possible. According to Penny
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[1] Calculate Φk i = 1 to i = nR − nN A ← ΦT
kΦk E ← ΦkA−1ΦT

k Find q1 such that eq1q1 =
min
j∈R

ejj

L← {q1, . . . , qnk
} where q’s are the DOF associated with the kth contact pair (k ∈ Ccp) and nk

is the number of DOF in kth contact pair N ← R/L R ← N Delete rows of Φk corresponding
to the DOF in L

Algorithm 4. DOF selection based on EIDV method

et al.,139 many of the criteria for choosing the master DOF for model order reduction are
similar to choosing measurement locations in a way such that the lower frequency modes
can be captured accurately. In fact, as examined by Penny et al., both the Henshell and
Ong method and the EIDV method produce acceptable selections in most cases (in a quasi-
optimal manner). The DOF selection algorithm based on the EIDV method is shown as
Algorithm 4. First, the eigenvalue problem in Eq. (111) is solved for the first k modes, and the
associated modal matrix is denoted by Φk = (φ1,φ2, . . . ,φk). That is KΦk =MΦkΛk, where
Λk is a diagonal matrix with diagonal entries being the square of the natural frequencies
of the open B.C. linear system. The Fisher information matrix A is then calculated as
A =ΦT

kΦk, and an idempotent matrix E is computed as E =ΦkA−1ΦT
k . The diagonal of E is

called the independence distribution vector (see Ref.140 for detailed formulations). The least
contributing DOF to the independence of the modes among the ones in R is identified as
the one with the smallest diagonal element in E. The associated DOF are also identified and
stored in L, and both N and R are updated as in the Henshell and Ong method. Finally,
the rows of Ψk corresponding to the DOF in L are deleted. The iteration continues until the
size of N reaches the desired nN .

Although the EIDV method has a similar objective for choosing DOF as the Henshell and
Ong method, the objective of the EIDV method is not exactly the maximization problem
of Eq. (113). Therefore, it is expected that the Henshell and Ong method returns better
solutions to the given maximization problem than the EIDV method, as it is shown in the
next section.

9.3 Case studies

In section 9.2, the method to select the nonlinear DOF has been introduced. In this section,
the performance and accuracy of the method are demonstrated by applying the algorithm
to two example problems. In the first case study, the accuracy of the proposed method is
discussed in terms of the bilinear frequencies and forced response. Furthermore, a metric to
assess accuracy is introduced and examined. The second case study is provided to demostrate
the performance of the proposed method when applied to a system with a more realistic and
complex FE model featuring a large number of DOF on the faces involving intermittent
contact.

9.3.1 Simple cracked plate model

Problem description A cantilevered cracked plate model was constructed with Young’s mod-
ulus E = 2.0 × 1011 Pa, Poisson’s ratio ν = 0.3, and density ρ = 7800 kg/m3, and geometry
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(a) FE model (b) Magnified crack surface

Fig. 50. Cantilevered cracked plate model

(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs) (c) nN = 16 (8 pairs)

(d) nN = 32 (16 pairs) (e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Fig. 51. Selected nodes by penetrating surface criterion (left edge open)

(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs) (c) nN = 16 (8 pairs)

(d) nN = 32 (16 pairs) (e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Fig. 52. Selected nodes by EIDV method (left edge open)

shown in Fig. 50(a), where w = 6.0 × 10−3m, l = 6.0 × 10−2m, h = 1.5 × 10−1m, lc/l = 0.625,
and hc/h = 0.475. The model was discretized with 5,120 linear solid elements and resulted
in mass and stiffness matrices with 18,630 DOF. On the crack surfaces shown in Fig. 50(b),
there are 180 nodes, or 90 contact pairs on the surfaces. Hence, the number of associated
DOF is 540. The CMS method shown in the section 9.2.1 was then applied to the FE model,
and it resulted in a 681 DOF system (3.6% of the original size) consisting of 621 physical
DOF and 60 modal coordinates corresponding to the free-interface normal modes. With this
reduced order model, both algorithms in Algorithms 3 and 4 were applied for nN =4, 8, 16,
32, 64, and 128. For the EIDV algorithm, the first four modes were considered to construct
the modal matrix.
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(a) nN = 4 (2 pairs) (b) nN = 8 (4 pairs) (c) nN = 16 (8 pairs)

(d) nN = 32 (16 pairs) (e) nN = 64 (32 pairs) (f) nN = 128 (64 pairs)

Fig. 53. Selected nodes by the Henshell and Ong method (left edge open)

Table 4
Average CPU times for generating node patterns over 100 trials, and typical CPU times to compute
forced response for 256 steps within 200 to 215 Hz.

3*nN Penetrating surface criterion EIDV Henshell and Ong

Node Forced Node Forced Node Forced

selection [s] response [s] selection [s] response [s] selection [s] response [s]

2 6.15×10−1 1.27 2.23 1.18 3.69 1.21

4 6.21×10−1 5.64 2.26 3.99 3.68 3.23

8 6.18×10−1 1.85×101 2.19 2.87 × 101 3.69 2.07 × 101

16 6.07×10−1 5.00×101 2.20 1.07 × 102 3.65 9.35 × 101

32 6.09×10−1 1.48×103 2.12 1.37 × 103 3.52 8.17 × 102

64 6.26×10−1 1.08×104 1.93 9.86 × 103 2.66 1.03 × 104

90 N/A 2.62 × 104 N/A 2.62 × 104 N/A 2.62 × 104

In order to compare these results with an intuitive selection method, a selection criterion was
also employed, where the nonlinear DOF were chosen based on the amount of penetration
between the nodes in a contact pair for the modes of interest (the fourth mode), which is
referred to as penetrating surface criterion. Namely, the penetrating surface criterion is based
on the observation that penalizing the inter-penetration of the most penetrating contact pairs
may produce the stiffest system response. The selected node pattern with such criterion is
shown in Fig. 51, and the results of the EIDV method and the Henshell and Ong method
are shown in Figs. 52 and 53. As can be seen in Fig. 51, if the nodes are chosen based on
the penetrating surface criterion, the selection starts from the nodes near the crack edge
(open side) for nN = 4, and it then proceeds toward the tip of the crack (closed side) as nN
increases. This result is expected because the motion of the crack surfaces is more significant
near the open edge than near the closed edge. In contrast, the EIDV method starts to select
nodes near the crack edge, but it tends to choose more nodes on the crack rims than nodes
near the crack edge, as shown in Fig. 52. Finally, the Henshell and Ong method selects the
nodes near the crack edge first, for nN = 4, but it then tends to select nodes over the crack
surface in a more distributed manner, as can be seen in Fig. 53.

Forced Response Analysis Next, to evaluate the influence of the application of the nonlinear
B.C. onto the selected nodes on an NNM frequency, forced response analysis was carried
out by applying an external harmonic loading to the cracked plate. As one may note, the
repetitive opening and closing of the crack faces must be treated appropriately with contact
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(a) Henshell and Ong method (linear)
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(b) Henshell and Ong method (nonlin-
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(c) EIDV method (nonlinear)
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(d) Penetrating surface criterion (non-
linear)

Fig. 54. Results of forced response analysis of the cracked plate

algorithms when the forced response of this cracked structure is considered. As a result,
the vibration is nonlinear and the steady-state response may not be expressed as a har-
monic function even if the external force is a harmonic function. Therefore, in this study
the steady-state response was obtained by assuming that the displacement can be expressed
as a truncated Fourier series, and the nonlinear boundary condition can be enforced by a
penalty method.116 The solution method is also known as the hybrid frequency-time domain
method,149,153 which is based on the concept of harmonic balance method.107 The detailed
formulation of the method is omitted in this paper for the sake of brevity.

It is noted that the system matrices were further reduced by the application of Eq. (99) to
the reduced-order model before the forced response calculation was performed. That was
done by keeping the selected node pairs as active DOF and condensing out the other DOF
including physical and modal coordinates. For example, with nN = 64 (32 pairs), the system
size was reduced down to 155 DOF, which is 0.83% of the original system size.

A harmonic forcing of magnitude 3 N was then applied at the tip of the plate to excite the
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first vibration mode, which is the first out-of-plane bending mode. The forced response was
calculated for both the linear case (i.e., with open B.C.) and the nonlinear case (with the
nonlinear boundary conditions imposed on N). The results are shown in Fig. 54. As can be
seen in Fig 54(a), the selection pattern based on the Henshell and Ong method does not alter
the linear forced response. This is because the selection of the active DOF does not alter
the eigenvalues of the linear reduced order model. In contrast, the number of contact pairs
greatly affects the results of nonlinear forced response as shown in Fig. 54(b). Also, one may
observe that the response obtained with 64 contact pairs is almost identical to that obtained
with the full set of 90 contact pairs. That implies that for accurately calculating the nonlinear
resonant frequencies, it may not be necessary to enforce nonlinear boundary conditions for all
the contact pairs on the crack faces. The same forced response calculations were carried out
with the node patterns selected by the EIDV method and the penetrating surface criterion.
The results obtained are shown in Figs. 54(c) and 54(d). As can be seen in Fig. 54(c), the
results obtained with the patterns chosen by the EIDV method are comparable with the ones
produced by the Henshell and Ong method. Also, as can be seen in Fig. 54(d), the forced
response with the node patterns chosen by the penetrating surface criterion produced worse
results than the other two methods, i.e., for a given number of nN , the predicted resonant
frequency by the approach is less accurate than that calculated by the other methods. This
is the most visible in the results for nN = 64, for which both the Henshell and Ong method
and the EIDV method produced results that are almost identical to the results for the full
model with nN = 90.
Moreover, to evaluate the effects of nN on the computational speed, the average CPU times
for generating node patterns, as well as the ones required to obtain the steady-state forced
response are shown in Table 4. The CPU time was measured on a computer with Intel Core
2 Duo 2.4GHz processor and 4.0GB of RAM. First, the CPU time for generating the node
pattern with each algorithm was measured for 100 trials, and the average values are shown
in Table 4. As can be seen, the node selection by Henshell and Ong method takes longer
than the other two methods for all nN , due mostly to the cost associated with the successive
application of Guyan reduction. The other two methods are faster than the Henshell and
Ong method. However, they sacrifice the accuracy in the resulting nonlinear forced response.
Also note that the CPU time decreases as nN increases for both EIDV and Henshell and Ong
methods, because these methods eliminate the unnecessary DOF at each iteration, rather
than choosing necessary DOF. Thus, the node pattern with larger nN is generated with
less CPU time. Second, the forced response was calculated at 256 points evenly-spaced in a
frequency range from 200 Hz to 215 Hz for nN = 2, 4, 8, 16, 32, and 64 by the three methods
considered, and for the case with nN = 90, and the results are shown in Table 4. Although
there is no significant CPU time difference among the selection algorithms, one can notice
that the CPU time can be greatly reduced when the calculations are done with the sampled
nodes, without sacrificing too much accuracy if the set of nodes were chosen by the proposed
method. Also, note that the node selection has to be done only once for the entire frequency
range of interest, and the cost is much smaller (e.g., only 0.03% for the Henshell and Ong
method with nN = 64) than that required for computing forced response with sufficiently
large nN . Bilinear Frequency Approximation Next, the influence of the selected node pattern
on the bilinear frequencies is discussed. The first four bilinear frequencies were calculated
for the model with the selected node patterns with the three node sampling methods, and
the results are shown in Fig. 55 along with their linear vibration mode shapes. The first four
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Fig. 55. Errors in the first four bilinear frequencies:(a) NNM 1, (b) NNM 2, (c) NNM 3, (d) NNM
4

modes correspond to the first out-of-plane bending, the first torsion, the second out-of-plane
bending, and the first in-plane bending modes respectively. The plots in Fig. 55 show the
percentage errors in the bilinear frequency versus the number of contact pairs, where the
error is defined as the ratio of the difference between the bilinear frequency with the sampled
contact pairs and the frequency obtained with the full set of contact pairs, to that with the
full set of contact pairs. As can be seen in Fig. 55, the Henshell and Ong method consistently
provides the best results among all the methods for the first four modes. Moreover, it shows
the best convergence rate in terms of the number of contact pairs.

A posteriori accuracy assessment

Even though intuitive, the approach which chooses the contact pairs with the most penetra-
tion does not provide the best results because applying the nonlinear boundary conditions at
these nodes does not result in the stiffest vibration response. In contrast, the Henshell and
Ong method and the EIDV method produced node patterns that yield results closer to the
reference results in terms of forced response and bilinear frequencies. In particular, the Hen-
shell and Ong method iteratively aims to solve the maximization problem in Eq. (113) in a
quasi-optimal manner. Therefore, the bilinear frequencies as well as the resonant frequencies
were well approximated with the nodes chosen by the Henshell and Ong method.

To better understand the governing factor for the accuracy of the results, a more physical
interpretation of the results is provided here. Namely, the key effect for achieving the good
approximation of the NNM frequency is to ensure, as much as possible, the non-penetrability
condition on the contact pairs where the nonlinear B.C.s’ are not applied. Also, the penetra-
tion should be evaluated during a complete vibration cycle. Thus, both the depth and the
duration of the penetration should be taken into account. These quantities vary in space, and
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(a) nN = 16 (8 pair)
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(b) nN = 64 (32 pair)

Fig. 56. Virtual impulse for a period of vibration for NNM 1

depend on the frequency of vibration. Hence as a metric to characterize not only the amount
but also the duration of penetration over the entire crack surfaces for a given vibration
frequency, the following quantity is introduced

F̂ =∫ T

0
(∫

ΓA(ΓB)
keup(r, t)dΓ)dt, (118)

where F̂ is a quantity with the dimension of impulse referred to as the virtual impulse, ke is
an equivalent spring constant per unit length determined by the ratio between the Young’s
modulus multiplied by the characteristic area and the characteristic length, up is the amount

of penetration along the surface normals, and T is the period of vibration. The quantity F̂
is obtained based on the calculated time trajectory of displacements of the nodes on the
crack surfaces, and can be thought of as an impulse that does not contribute to the system
response. This impulse is not applied to the system when the response is calculated. In other
words, the smaller the value of F̂ is, the stricter the boundary conditions are imposed on
the nodes over the entire crack surfaces.

First, the forced response analysis was carried out, and the corresponding time history of
up over the entire crack surface was recovered from the vibration response. The integrals
in the Eq. (118) were then evaluated by a simple quadrature rule both in space and time.
The metric was calculated for the first and the fourth modes for 8 and 32 pairs chosen by
the node sampling methods, and the results are shown in Figs. 56 and 57. As can be seen
in Figs. 56 and 57, the virtual impulse varies over the frequency range. In particular, when
the frequency of excitation is close to the resonant frequency, the amount of penetration
increases as well. However, for all cases, the Henshell and Ong method consistently results
in the smallest impulse over the frequency range among the three methods considered. That
means that the nonlinear B.C. on the crack faces is the most strictly enforced by the node
patterns chosen by the Henshell and Ong method.

9.3.2 Large Scale Cracked Blade Model

In this subsection, the performance of the proposed method applied to a FE model of a
cracked blade model with a large number of DOF is demonstrated. A blade model whose
thickness is 2.5×10−3m and both chord and span lengths are approximately 5.0×10−2m was
constructed, with the Young’s modulus E = 205GPa, density ρ = 7832kg/m3, and Poisson’s
ratio ν = 0.3. The blade was discretized with linear and quadratic tetrahedral elements,

132



1400 1500 1600
0

1

2

Frequency [Hz]
Im

p
ul

se
 [N

s]
 

Penetrating surface criterion
EIDV
Henshell and Ong

(a) nN = 16 (8 pair)
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(b) nN = 64 (32 pair)

Fig. 57. Virtual impulse for a period of vibration for NNM 4

(a) FE model (b) Crack surface

Fig. 58. A cracked blade model

resulting in a system with 392,361 DOF as shown in Fig. 58(a). The crack path as well
as its surrounding FE mesh was generated by a fracture analysis code FRANC3D.155 The
crack surfaces consist of quadratic elements with 487 contact pairs at the edges of vertices
of triangles, resulting in 2,922 DOF for both surfaces, as shown in Fig. 58(b). The size of
the FE model was then reduced down to 2,949 DOF (0.75% of the original size) by the
primary CMS method, which consists of 2,934 physical DOF (2,922 DOF on crack faces and
12 additional DOF for forcing) and 15 modal coordinates corresponding to the free-interface
normal modes. The proposed method was then applied to the reduced order model, and the
results are shown in Figs. 59 and 60. For the EIDV method, the first 15 modes were used
for the calculations. As can be seen in Fig. 59, the EIDV method selects nodes along the
rim of the crack faces, similar to the previous case study. In contrast, the Henshell and Ong
method tends to choose the nodes slightly off the crack rim in a more distributed manner
over the crack face, as in the previous example. With the selected node patterns, the first
four bilinear frequencies were calculated. The first four modes correspond to the first out-
of-plane bending, the first torsion, the second out-of-plane bending, and the first chord-wise
bending mode respectively. The errors were then calculated as in the previous example and
shown in Fig. 61 along with their linear vibration mode shapes. As can be seen in Fig. 61,
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(a) nN = 64 (32 pairs) (b) nN = 128 (64 pairs)

(c) nN = 256 (128 pairs) (d) nN = 512 (256 pairs)

Fig. 59. Selected nodes by EIDV method for nB = 974 (487pairs)

(a) nN = 64 (32 pairs) (b) nN = 128 (64 pairs)

(c) nN = 256 (128 pairs) (d) nN = 512 (256 pairs)

Fig. 60. Selected nodes by the Henshell and Ong method for nB = 974 (487pairs)
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Fig. 61. Error in the bilinear frequency for the first four NNMs

the Henshell and Ong method consistently shows the better results than the results obtained
by the EIDV method.
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.

10 BILINEAR MODAL REPRESENTATIONS FOR REDUCED-ORDER MOD-
ELING OF LOCALIZED PIECEWISE-LINEAR OSCILLATORS
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Dynamical systems with piecewise-linear nonlinearity appear in many disciplines where phys-
ical systems have discrete discontinuities. In this paper, a novel reduced order modeling
method is proposed for piecewise-linear oscillators, with special attention to vibration prob-
lems of elastic media with contact nonlinearity. In particular, the piecewise-linear nonlinearity
is assumed to be localized, in the sense that the nonlinearity appears only in a few regions, as
opposed to globally distributed nonlinearities. Typical engineering examples of such systems
can be found in many mechanical, aerospace, or civil structures involving gap nonlinearity
caused by joints, interfaces between components, delamination, or cracks. In many cases,
such nonlinearity is unavoidable for modeling, analyzing and controlling such structures. In
addition, sometimes the dynamics of such structures (in certain operating conditions) cannot
be reasonably well described without proper modeling of the nonlinearity. Moreover, due to
the growing demand on the accuracy of the analysis of such structures, dealing with the
complexity of such systems is increasingly challenging. Modeling such structures requires
a careful treatment of the piecewise linear nonlinearity caused by discrete discontinuities.
Hence, as the ratio of the number of discontinuities to the system dimensionality increases,
the analysis of such system becomes more difficult. Therefore, an efficient reduced-order
modeling methodology for accurately modeling such structures is greatly needed from both
academic and practical standpoints.

Reduced order modeling has been an active research topic because it has high practical
importance and because it provides a good understanding of the fundamental characteristics
of a variety of dynamical systems. Many methods have been developed for various systems.
Here, we shall restrict the discussion to the reduced order modeling of structural systems
with localized and piecewise-linear nonlinearities. In terms of the properties of the dynamics
of the system, reduced order modeling methods can be divided into methods based on linear
transformations, and methods based on nonlinear normal modes (NNM).

Reduced order models based on linear transformations have been investigated by many re-
searchers for solving nonlinear dynamic problems with localized nonlinearities. For example,
Friswell et al.148,156 developed methods such as the improved reduced system (IRS)135 and the
system equivalent expansion process (SEREP),145 both of which are based on linear transfor-
mations similar to Irons-Guyan reduction119,157 with improved dynamic characteristics. They
concluded that these methods require that the DOF directly subjected to the nonlinearity
be treated as master degrees of freedom (DOF) for the accurate prediction of the nonlin-
ear dynamics. Segalman158 proposed a model reduction technique for systems with localized
nonlinearities (piecewise linear), by augmenting the set of linear normal modes with joint
modes, which are basis functions with discontinuities at the locations where nonlinearities are
present. The method is similar in nature to the method of component mode synthesis (CMS)
and other reduced order modeling techniques based on linear transformations. However, the
augmentation of conventional sets of basis functions with special modes yields a basis that
effectively contains the configuration space for systems with local nonlinearities. A similar
concept is applied in this paper.

Particular cases of piecewise nonlinearity are unilateral constraints. A large number of so-
phisticated methods have been proposed for systems with such nonlinearities. For example,
the method proposed by Butcher and Lu114 is based on a linear approximation of the model
reduction technique based on nonlinear master-slave relationship.159 The transformation ma-
trix of the method is produced by an iterative procedure and is similar to that of Irons-Guyan
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reduction, where the DOF subjected to the piecewise-linear nonlinearity are retained in the
reduced order model (ROM) as master DOF. The important characteristic of their method is
that the ROM preserves the exact eigen-structure of (the linear part of) the original system.
In particular, the method (named local equivalent linear stiffness method) was successfully
applied to a system of four DOF lumped-mass piecewise-linear oscillators with two DOF
being subjected to piecewise-linear nonlinearity.

Several attempts have been made to use also the concept of automated multi-level substruc-
turing,160 which was developed primarily for linear dynamics, for solving nonlinear dynamic
problems with large dimensions and multiple discontinuities. For example, Theodosiou and
Natsiavas161 proposed an analysis procedure for solving systems with multiple unilateral
constraints using linear complementarity based contact algorithms in conjunction with a
reduced order modeling method developed by Papalukopoulos and Natsiavas.162 There, the
final ROM is obtained by automatically partitioning the structure into substructures and
considering the DOF subjected to nonlinearity as master DOF.

In contrast, only a few attempts have been made to construct ROMs based on NNMs for
piecewise linear systems. Chen and Shaw95 proposed a method for constructing NNMs for
multi-DOF piecewise linear systems by the invariant manifold approach (and an asymptotic
expansion around the fixed point obtained in a Poincaré section). Jiang et al.94 further
generalized the method by the application of a Galerkin approximation of the invariant
manifold.163 A method based on NNMs was proposed by Apiwattanalunggarn et al.164 for
general multi-DOF nonlinear structural systems by extending the concept of fixed-interface
CMS (also known as Craig-Bampton method118) and using fixed-interface NNMs. Although
the invariant manifold approach can produce the NNMs accurately, the application of the
method to large dimensional models with multiple discontinuities is not yet effective mostly
due to its computational cost.

Another class of order reduction methods is based on proper orthogonal decomposition (POD)
and associated eigenvectors (proper orthogonal modes (POMs)), which can often be regarded
as an optimal linear representation of the NNM in the sense of least squares.165 POD has
been applied to non-smooth system with impacts by Cusumano and Bai,166 to relate the
dimensionality and the spatial coherence of the system. Modal reduction using POMs for
non-smooth system was then investigated by Kappagantu and Feeny167 for a multi-DOF
system with frictional excitation. Their study showed that the dominant POMs can pre-
serve important characteristics of the system (such as bifurcations). Thus, the approach has
been used for constructing reduced order models of various nonlinear systems in structural
dynamics.168 However, one of the most important difficulties in using POD is not avoided.
Namely, the calculation of POMs requires solving the full nonlinear vibration problem.

Elastic structures with cracks are important engineering examples of system where intermit-
tent contact plays a crucial role. There are a large number of publications regarding this
issue. A comprehensive review can be found in Refs..59,154 In this paper, we hypothesize that
the dynamics of the systems of interest with (localized) piecewise-linear nonlinearity can be
approximated by a set of modes obtained for the system where certain special boundary
conditions are applied on the crack surfaces. This hypothesis stems from the fact that the
nonlinear resonant frequencies of piecewise linear systems derived from vibration problems
of cracked structures can often be well captured by fb = 2fofs/(fo + fs), where fb is called

137



a bilinear frequency, while fo and fs are the natural frequencies of two linear systems with
different boundary conditions. This concept was initially introduced as the exact natural
frequency of a piecewise-linear oscillator with a single discontinuity,87,169 and was extended
as a bilinear frequency approximation (BFA) of the nonlinear resonant frequencies for various
systems with piecewise-linear nonlinearities, e.g., two dimensional cracked beams,91 piecewise
linear oscillators with clearance,88 and three dimensional cracked plates.154 This concept is
further exploited in this paper.

Another important engineering example of a system with potential intermittent contact ap-
pears in the vibration of delaminated composite laminates (such as delaminated beams and
plates). A comprehensive literature review about this issue was provided by Della and Shu.170

Many of the previous researchers did not consider the opening and closing of the delami-
nated interfaces. Instead, they assume that the delaminated interfaces do not touch during
the vibration — which are referred to as free modes171 — or they assume that the interface
is always closed with sliding of surfaces being permitted — which are sometimes referred to
as constrained modes172 — or they avoided the interpenetration by adding spring elements
between the layers, such as done by Burlayenko and Sadowski.173 In contrast, an increasing
number of investigations have considered the effects of contact. For example, vibration prob-
lems of a laminated plate with contact nonlinearity has been studied by Żak et al.,174 where
the contact forces are treated via a penalty method in the time domain. Kwon and Lanna-
mann175 also investigated the dynamic response of delaminated sandwitch structures using
finite element modeling in conjunction with impact nonlinearity at the delaminated surface.
Żak et al. also considered the vibration problem of a delaminated composite beam, where
beam finite elements were used in conjunction with impact conditions. However, reduced
order modeling of such structures has not been studied.

In this paper, POD and POMs are first exploited for constructing ROMs of piecewise linear
structures with multiple discontinuities. Next, a novel technique to approximate POMs by
a set of linear normal modes with special boundary conditions is proposed. This technique
is referred to as the bi-linear modal approximation and allows the construction of ROMs
without having to find the POMs. Hence, the key drawback of using POMs (and POD) is
overcome.

This paper is organized as follows. In Section 10.1, the mathematical formulation of the
vibration of piecewise linear structures is briefly reviewed. In Section 10.2, POD is applied
to a cracked plate, and the characteristics of the POMs are discussed. The bi-linear modal
approximation of POMs is then proposed. The validity of the proposed method is further
discussed in Section 10.4 using case studies of vibration problems for a cracked plate and a
delaminated plate.

10.1 Mathematical formulation: Piecewise linear structures in a mapped subspace

Consider an N -dimensional (finite element) model of a structure. Denote the vector of gener-
alized coordinates of the system by x(t) ∈ RN , and associated kinetic and potential energies
by T (ẋ) = (1/2)ẋTMẋ and U(x) = (1/2)xTKx, where M,K ∈ RN×N are symmetric and
positive-definite mass and stiffness matrices. Next, assume that the structure is subject to
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unilateral inequality constraints of the form

gi(x) ⩾ 0, i = 1, . . .m, (119)

where m is the number of constraints, and m ≪ N . The gap function gi designates the
distance between the DOF of contact pairs at a crack. Hence, gi can be expressed as

gi(x) = xmi − xsi − g0i , i = 1, . . .m, (120)

where superscripts m and s indicate the DOF involved in the ith constraint, and g0i is a
constant initial gap. Note that herein g0i is assumed to be zero for all i. It is known that non-
vanishing clearances complicate the dynamics significantly.87,88 While those complications
are intriguing, they are beyond the scope of this paper. Next, consider that the system is
subject to non-conservative forces and other viscous forces. Then, the extended Hamilton’s
principle requires that in a time interval [t1, t2]

∫ t2

t1
(δLx(x, ẋ) + δWv + δWnc + δWuc)dt = 0, (121)

where Lx(x, ẋ) = T (ẋ) − U(x). δWv is the virtual work of the viscous forces, and can be
expressed as δWv = −δxT(∂F /∂ẋ) where F (ẋ) = (1/2)ẋTCẋ, with C ∈ RN×N being the
damping matrix. δWnc is the virtual work of the non-conservative forces Q(t) ∈ RN , and can
be expressed as δWnc = δxTQ(t). δWuc is the virtual work associated with the unilateral con-
straints in Eq. (119). In this paper, δWuc is modeled by a penalty method.176 The associated
penalty functional Px is a function of the physical coordinates x(t), and can be written as

Px(x) = m∑
i=1

pi(x), (122)

where pi(x) is a C1-continuous penalty functional for the ith constraint defined as
pi(x) = −(1/2)kp⟨gi(x)⟩2, where kp ∈ R+ is a given penalty parameter, and ⟨⋅⟩ denotes
max (0, ⋅). The virtual work δWuc can then be calculated by taking the functional derivative
of Px, or δWuc = δPx(x).
We assume that x(t) undergoes a small amplitude vibration. Hence, the system may be
subject to intermittent contact due to the constraints in Eq. (119). We further assume that
one can find a subspace much smaller than N that captures x(t) well. Such a subspace
is denoted here as V = span (φ1,φ2, . . . ,φn), where n ≪ N , and vectors φi are linearly
independent vectors of length N . A transformation matrix associated with a linear map
V ?→ RN is then formed as Φ = [φ1,φ2, . . . ,φn] ∈ RN×n and applied to x(t), i.e., x(t) =
Φη(t) where η(t) is a vector of generalized coordinates containing ηj(t) for j = 1, . . . n. The
penalty functional Px is then evaluated in the η coordinates as

Pη(η) = − m∑
i=1

1

2
kp ⟨(φic)Tη − g0i ⟩2 , (123)

where φic denotes the transpose of a row of Φ corresponding to the contact DOF of the
ith contact pair. Defining ηε ∶= η + εδη where ε ∈ R and δη ∈ Rn and taking a functional
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derivative of Pη yields

δPη(η) = δηT (− m∑
i

kp ⟨(φic)Tη − g0i ⟩ (φic)) . (124)

Application of the linear transformation Φ to T (ẋ), U(x) and F (ẋ) in Eq. (121) yields the
following governing equations:

MΦη̈ +CΦη̇ +KΦη + fΦ(η) =QΦ(t), (125)

where the transformed matrices and generalized forces are defined as MΦ = ΦTMΦ, CΦ =
ΦTCΦ, KΦ =ΦTKΦ, fΦ(η) = ∑m

i kp ⟨(φic)Tη − g0i ⟩ (φic), and QΦ =ΦTQ.

10.2 Proper orthogonal decomposition

For nonlinear systems, it is known that POD can be viewed as a minimization of the error
in the choice of a linear representation of the NNM, if the motion is a single synchronous
NNM .165 In this Section, POD of the nonlinear forced response of a piecewise linear system
is considered, and a few key properties of the POMs are discussed.

10.2.1 POM construction by the method of snapshots

Let us assume that x(t) was numerically captured at r (≪ N) discrete time instants, and
each observation of x(t) at tj, j = 1, . . . , r is denoted by yj = x(tj), which is referred to as a

snapshot. We seek an orthonormal basis {ψi}di=1 that describe typical members of yj better
than any other basis of the same size, where d = dim (span (y1, . . . ,yr)). Such a basis can
be found by maximizing the averaged projection of the snapshot vectors yj onto a set of
orthogonal vectors {ψi}di=1 with a suitable normalization, i.e.,

max
{ψi}di=1

J ({ψi}di=1) , (126)

subject to ∥ψi∥ = 1, i = 1, . . . , d, (127)

where

J ({ψi}di=1) = r∑
j=1

( d∑
k=1

(ψT
k yj)2) , (128)

and ∥⋅∥ represents the 2-norm of a vector: ∥x∥ = (xTx)1/2 for ∀x ∈ RN . The solution of
the maximization problem Eq. (126) under the constraints Eq. (127) can be obtained by
maximizing a functional

L({ψi}di=1,{λi}di=1) = J({ψi}di=1) − d∑
i=1

λi (∥ψi∥ − 1) . (129)

The necessary condition for the extrema requires that the functional derivatives of L with
respect to {ψi}di=1 and {λi}di=1 vanish, which leads to the following eigenvalue problem (see,
e.g., Ref.177)

YYTψi = λiψi, (130)
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Fig. 62. Finite element model of a cracked plate with N = 963 and m = 6

where Y = [y1, . . . ,yr]. The eigenvalue problem in Eq. (130) is the POD. The eigenvalues
and the eigenvectors of Eq. (130) are referred to as proper orthogonal values (POVs) and
proper orthogonal modes (POMs). Solving Eq. (130) requires the eigenvalue and eigenvector
extraction of an N×N matrix, which is not practical for large-dimensional systems. However,
the method of snapshots proposed by Sirovich178 can reduce the problem down to an r × r
eigenvalue problem. It uses a property of the basis where ψi can be represented as a linear
combination of snapshots, i.e.,

ψi =Yπi, i = 1, . . . r, (131)

where πi ∈ Rr is yet to be determined. Substituting Eq. (131) into Eq. (130), a sufficient
condition for the solution of Eq. (130) can be found as

YTYπi = λiπi. (132)

Solving the r×r eigenvalue problem in Eq. (132), and transforming πi back to ψi by Eq. (131)
yields the POMs. Note that in this paper, the mean of the snapshots is not subtracted from
the snapshots when the covariance matrix is formed. In some cases it is useful to subtract
the mean from all snapshots,168 but that is not a requirement for all cases. However, the
meaning and interpretation of the POMs has subtle differences in these two approaches.

10.2.2 POD for a piecewise linear system and ROM construction — A cracked plate

The POD is applied to a piecewise linear system derived from a vibration problem of an
elastic plate with a crack. The crack is modeled as two geometrically identical surfaces
inserted into the elastic plate, which contains m discrete points on each surface. The plate is
made of steel with density ρ1 =7,800 kg/m3, Young’s modulus E1 = 200 GPa, and Poisson’s
ratio ν = 0.3. The crack depth is 0.5 relative to the plate width. The length, width, and
thickness of the plate are 0.15 m, 0.06 m, and 0.006 m respectively. The motion of the entire
plate is subject to the corresponding m inequality constraints represented in Eq. (119), such
that the crack surfaces are not allowed to penetrate each other during the motion. The FE
model of the cracked plate is shown in Fig. 62 where the plate was discretized with 180 linear
brick elements, and N = 963 and m = 6. A distributed harmonic loading is applied at the
tip of the plate, which is parallel to the x2 direction, such that an NNM (near a resonant
frequency corresponding to the first in-plane bending mode) is excited. The resulting initial
value problem was solved by a Newmark-β method with contact problem being treated by
an augmented Lagrangian method.117 POD was then applied to snapshots (r = 32) taken
at steady-state. For comparisons, the same calculation was performed with the same plate
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Fig. 63. Results of POD of a linear harmonic response analysis of a plate, and a nonlinear harmonic
response analysis of the same plate with a crack. (a) First three POMs from linear harmonic
response of healthy plate. (b) First three POMs from nonlinear harmonic response of cracked plate.
(c) POV ratio (log scale) from linear and nonlinear harmonic responses: —○— healthy plate; —×—
cracked plate.

without the crack, and POD was applied to the snapshots at steady-state. The first three
dominant POMs along with their POVs (normalized with respect to the largest POV) are
shown in Fig. 63 for both linear harmonic response of the plate and nonlinear harmonic
response of the plate with a crack. As can be seen in Fig. 63(a), the most dominant POM,
ψ1, coincides with the linear vibration mode. The second POM, ψ2, is similar to the second
in-plane bending mode, but its contribution to the motion is limited, as can be seen in its
POV shown in Fig. 63(c). The third POM, ψ3 is simply due to noises, with the corresponding
eigenvalue being negligible. In contrast, for the nonlinear case, although the first two POMs,
ψ1 and ψ2, are similar to the linear vibration modes of the cracked plate, the third POM, ψ3

captures the local deformation of the motion, which does not appear in the linear counterpart.
The contribution from the rest of the POMs gradually decreases as can be seen in Fig. 63(c).
However, the decreasing rate is slower than that for the linear case. This indicates that
the nonlinearity posed by the inequality constraints added complexity into the vibration
response. Hence, if one attempts to construct a ROM with the POMs, one ought to include
more POMs than for the linear case, which is true in general for most nonlinear systems.

Next, a ROM was constructed such that x(t) = Φη(t) where Φ = [ψ1, . . . ,ψnd
], where

nd is the number of dominant POMs, and forced response calculations were performed.
Furtheremore, to study the dependence of the number of dominant POMs on NNM, ROMs
were constructed not only for the first (in-plane) bending mode, but also for the second (out-
of-plane) bending mode, where the motion of the surfaces of discontinuity (crack) is more
complicated than that for the first in-plane bending mode. The POMs for the second (out-
of-plane) bending mode were constructed based on the snapshots taken at the corresponding
nonlinear resonant frequencies.

The first three dominant POMs in conjunction with the first 10 POVs are shown in Fig. 64
for the second (out-of-plane) bending mode. As seen in Fig. 64(c), the value of the POVs
for the second (out-of-plane) bending mode decreases more gradually than those for the
healthy/linear first (in-of-plane) bending mode as well as the first in-plane bending mode.
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Fig. 64. Results of POD for the second out-of-plane bending modes of the cracked plate. (a) First
three POMs for the second out-of-plane bending mode. (b) First three POMs for the second out-
-of-plane bending mode. (c) POV ratio (log scale): —○— healthy plate; —×— cracked plate.
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(b)

Fig. 65. Nonlinear frequency response. (a) First (in-plane) bending mode. (b) Second (out-of-plane)
bending mode. — FEM (963 DOF), + 6 POMs (6 DOF); ⊳ 5 POMs (5 DOF); × 4 POMs (4 DOF);
◻ 3 POMs (3 DOF); ◇ 2 POMs (2 DOF); ▽ 1 POM (1 DOF)

The nonlinear forced response was then computed with the constructed ROMs using a vari-
able step Runge-Kutta method, and the results are shown in Fig. 65 along with the forced
response results calculated with the full-order FE model. First, using the POM correspond-
ing to the largest POV did not produce the accurate response at all, mostly due to the fact
that the opening and closing of the discontinuous surfaces caused by the inequality Eq. (119)
cannot be precisely captured by using the most dominant POM alone. Second, the number
of POMs required to obtain satisfactorily accurate results is dependent on the NNM involved
in the physical response, as expected from the observations of the POVs. As can be seen in
Fig. 65(a), the number of POMs required to capture well the response is three. In contrast,
as shown in Fig. 65(b), one needs at least four POMs to accurately capture the second (out-
of-pane) bending mode. It is noted that the number of dependent variables involved in the
system of nonlinear ODEs is much less than that with the original FE model. For instance,
with six POMs for the second (out-of-plane) bending mode, the number of dependent vari-
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ables to be integrated is only 12, including the generalized coordinates corresponding to the
POMs and their velocities, whereas that for the FEM that number is 963.

10.3 Bilinear modal representation of the proper orthogonal modes

As shown in Section 10.2, the POMs can form a good basis for constructing a ROM which
captures well the dynamics of the piecewise linear system. However, the greatest disadvantage
of the ROM constructed from the POMs is that it requires a priori knowledge of the nonlinear
response, which is oftentimes the solution itself which one is seeking. Typically, the solution
involves computationally expensive calculations. In order to circumvent this difficulty, we
propose an approximation method of the POMs, based on an augmentation of a set of
linear normal modes. The fundamental idea is to construct a set of linearly independent
vectors which approximately span the space spanned by the dominant POMs, i.e., D =
span(ψ1, . . . ,ψnd

). Such a set of vectors is derived as follows. Let us assume that the system
is undergoing a vibratory motion and subject to the constraints in Eq. (119). At every time
step, equality might be enforced for some of the constraints in Eq. (119) whereas the rest
of the inequalities are strictly satisfied. Therefore, although the motion is subject to the
nonlinear boundary condition, the system can be considered as a linear system at every
time step. Depending on which equalities hold, the underlying linear system is different, and
such a system (with the equality constraints) is herein referred to as a linear subregion. If
there are m such constraints, then there are ∑m

k=1m!/((m−k)!k!) possible linear subregions.
If one is concerned with the motion where strictly only two of such linear subregions are
present during the motion, it is feasible to represent the configuration of all the DOF by a
linear combination of eigenvectors of each of these subregions. Hence, one can construct a
ROM using the eigenvectors of these linear subregions. A similar concept has been examined
by Chati et al.91 for a piecewise linear oscillator with a single discontinuity, by patching
the mode of each linear subregion together at the discontinuity. The constructed mode was
comparable to the NNM. However, with the presence of multiple discontinuities, it is not
obvious if it is even possible to find such a set of linear subregions, whose eigenvectors span
a subspace D. In this study, this concept is generalized to the case where there are more
discontinuities than one, and there are multiple states arising from a gradual opening and
closing of the contact/discontinuous surfaces.

10.3.1 Definition: bi-linear modal approximations of POMs

Let the eigenvalue problem of the system be written as

Kϕo = λoMϕo, (133)

where λo and ϕo are eigenvalues and the eigenvectors (mode) of the system without imposing
any constraints at the contact/discontinuous surface. This state of the system is herein
referred to as open, and designated by the subscript o. Considering that in the limit of using
all N normal modes as a basis, the space spanned by the dominant POMs can be contained
in the subspace spanned by all ϕo, i.e., D ⊂ span (ϕo1, . . . ,ϕoN). Furthermore, if the motion
is on the NNM near a linear normal mode, one can always choose at least one ϕo that

144



(a) (b)

Fig. 66. An example of the extrema of the motion. (a) No equality imposed. (b) All equalities
imposed.

resembles the most dominant POM, which is the closest linear representation of the NNM.
However, as discussed earlier in Sec. 10.2, one may have to include a large number of modes
to represent the local deformations at the contact/discontinuous surfaces. There are many
methods developed to date to accelerate the convergence of such a basis and capture the
local deformations, such as the use of static constraint modes or the use of attachment modes
in CMS.118 However, inclusion of the static modes for the compensation of the linear normal
modes tends to inflate the size of the ROM, as the number of such vectors is related to the
number of DOF on the contact/discontinuous surfaces. Therefore, one may not like to use
such vectors for compensating the linear normal modes for constructing ROMs for piecewise
linear systems. In this paper, we hypothesize that the subspace D can be well approximated
by the basis consisting of no (≪ N) of the normal modes, {ϕ1, . . .ϕno}, augmented by
another set of linear normal modes of a linear subregion, both of which are assumed to be
dominant during the motion. The two dominant modes are computed from the two linear
subregions corresponding to two extrema of the motion on the NNM. That is, if one defines
equality constraints associated with Eq. (119),

gi(x) = 0, i = 1, . . .m, (134)

then the linear subregion corresponding to an extremum is defined as the system with none
of Eq. (134) being imposed (i.e., open). The associated eigenvalue problem is Eq. (133).
The other subregion is defined as the system with all of Eq. (134) being imposed, which is
referred to as sliding and designated by subscript s. An example of the two extrema is shown
in Fig. 66 using the example of the cracked plate with in-plane bending motion. The linear
normal modes with all equalities being imposed are designated as ϕ̃s, and satisfy

Ksϕ̃s = λsMsϕ̃s, (135)

where λs and ϕ̃s are eigenvalues and eigenvectors, Ms and Ks are the mass and the stiffness
matrices of size (N −m) × (N −m) with a suitable elimination of redundant DOFs arising
from the constraints in Eq. (134). The elimination of variables can be written as a linear
transformation, Ks = ETKE and Ms = ETME, where E is a matrix of size N × (N −m).
After solving the eigenvalue problem in Eq. (135), the normal mode ϕ̃s is mapped to RN ,
such that ϕs = Eϕ̃s. The set {ϕok}no

k=1 is augmented by the set {ϕsk}ns

k=1, and the resulting
set of modes are grouped together and represented as Bno,ns = [ϕo1, . . . ,ϕono ,ϕs1, . . .ϕsns],
which is referred to as bi-linear modes (BLMs). The determination of no and ns, as well as
the selection criteria for ϕo and ϕs shall be discussed in detail in Section 10.3.2. Using the
notation of BLMs, the hypothesis is restated as follows: for a given set of POMs, {ψi}nd

i=1,
one can find a vector z ∈ Rno+ns , such that

∥Bno,nsz −ψi∥ / ∥ψi∥ ≪ 1, i = 1, . . . , nd. (136)
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Algorithm 5. Angle-based BLM selection

[1] Set a frequency range of interest: fl ⩽ f ⩽ fu Set a desired number of BLMs: nblm Solve
Koφo = λoKφoIdentify the mode of interest: (f̂o, φ̂o) where fl ⩽ f̂o ⩽ fu i = 1 to no Calculate
θi (φ̂o,φoi) (or θK,i (φ̂o,φoi)) end Sort φoi for i = 1, . . . no in ascending order of θi (or θK,i)

Solve Ksφs = λsKφsIdentify the mode of interest: (f̂s, φ̂s) where fl ⩽ f̂s ⩽ fu i = 1 to ns
Calculate θi (φsi, φ̂s) (or θK,i (φsi, φ̂s)) end Sort φsi for i = 1, . . . ns in ascending order of θi
(or θK,i) Form B = [Φo,Φs], where columns of Φo and Φs are sorted in ascending order of
θi (or θK,i)

Algorithm 6. Bilinear mode selection with interpolated POMs

[1] Compute snapshots Y that represent the dynamics of the system with a reasonably
coarse mesh Compute POMs {ψ1, . . . ,ψnd

} using Y Map the POMs onto the model
with a finer mesh {ψ̃1, . . . , ψ̃nd

} Solve Koϕo = λoMoϕo Solve Ksϕ̃s = λsMsϕ̃s B̃ =[ϕo1, . . . ,ϕono ,ϕs1, . . . ,ϕsns] k = 1 to nb i = 1 to np j = 1 to nblm − k Compute Rij =∣∣ψ̃i − Bj(BT
j Bj)−1BT

j ψ̃i∣∣, where Bj = [bj,B] end end Choose j = r that minimizes Rir

Form B = [B,br] Form B̃ = [{bj}j≠r] end
This assumption means that the subspace D can be represented well by the linear combina-
tion of ϕo and ϕs.

10.3.2 BLM selection criteria

Even though the BLMs can be computed before calculating the nonlinear vibration problem
of the original system, selecting the appropriate BLMs is not a trivial task, since one may
want to find the minimum number of BLMs that span the subspace D, which is not known
when selecting the BLMs. Herein, we propose BLM selection criteria, one of which requires
no a priori knowledge about the snapshots, and another which uses a priori knowledge
of snapshots of a similar but more tractable problem than the real problem of interest.
BLM selection criterion without a priori knowledge of snapshots As seen in Section 10.2,
for the forced response problems, the first POMs of the nonlinear response tend to resemble
the corresponding linear normal modes whose natural frequencies are within or near the
frequency range of interest, which are referred to as φ̂o and φ̂s. It is then possible to identify
the modes whose natural frequencies are the closest to the frequency range of interest for both
boundary conditions. However, these linear modes alone are not enough to spanD. Therefore,
other modes have to be chosen to compensate the space spanned by φ̂o and φ̂s. Such modes
may be chosen based on their similarity to modes φ̂o and φ̂s in some metric. The simplest
metric may be the Euclidean angle θ(x,y) for ∀x,y ∈ RN , defined by cos(θ) = xTy/ (∥x∥ ∥y∥).
In addition, from the observation that the local deformation has to be captured correctly,
a metric using a stiffness-based norm defined by ∥x∥K = xTKx for ∀x ∈ RN is considered.
Namely, the angle is defined as cos(θK(x,y)) = xTKy/ (∥x∥K ∥y∥K). The BLM selection
algorithm based on these metrics is shown in Algorithm 5. BLM selection criterion with a
limited a priori knowledge regarding snapshots If the discrete dynamical systems are the
ones derived from an infinite dimensional problem, one may be able to take advantage of
the results from the convergence study in terms of computational mesh. That is, given a
computational mesh with manageable complexity, one may be able to compute snapshots
of a dynamical system, which are less accurate than the ones with the finest possible mesh.
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Fig. 67. Cracked plate model with refined mesh where N = 2835 and m = 60

Next, the POD can be applied to the snapshots, and corresponding POMs can be computed,
which are denoted as ψ ∈ RZc, where Zc denotes the number of DOF of the system from the
coarse mesh. The POMs can then be expanded, such that they interpolate the displacement
field of the model with the finer mesh (with Zf DOF). This can be represented as a linear
mapping RZc ?→ RZf given by

ψ̃ =Nψ, (137)

where N ∈ RZf×Zc is a matrix representing the mesh interpolation, and ψ̃ is a POM mapped
to the finer mesh. It is noted that ψ̃ is not a POM computed from the snapshots of the system
with the finer mesh. Therefore, ψ̃ is not necessarily part of a good basis for constructing the
ROM of the finer mesh.

An optimal set of BLMs can then be chosen by finding the BLMs that best approximate the
interpolated POMs in the sense of least squares. Namely, for a given interpolated POM, ψ̃,
find a set of BLMs, B = [b1, . . . ,bnb

], such that

∣∣ψ̃ −B(BTB)−1BTψ̃∣∣ =minimum. (138)

In Algorithm 6, this is achieved as follows. First, B̃ is computed for a frequency range that
is slightly wider than the frequency range of interest, where B̃ = [ϕo1, . . . ,ϕono ,ϕs1, . . .ϕsns].
Second, one of the vectors in B̃ is selected, and Eq. (138) is examined for the dominant POMs
by using B as the selected vectors. The chosen vector is then renamed as b1 and stored in B.
Third, the chosen vector is eliminated from B̃. Next, the second BLM is selected such that
Eq. (138) is achieved for ∣∣ψ̃ −B2(BT

2B2)−1BT
2 ψ̃∣∣, where B2 = [B,b2]. Then, B is redefined

as B = [b1,b2]. This process is repeated until the number of the chosen BLMs reaches the
desired number.

10.4 Case studies

In this section, the proposed method is applied to engineering problems, and its efficiency and
validity are discussed. The focus of the case study in Sec. 10.4.1 is placed on the examination
of the proposed BLM selection algorithms. The case study in Sec. 10.4.2 is provided to
demonstrate the applicability of the BLM representation for other engineering applications
such as modeling delaminated plates.
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Fig. 68. Convergence of residuals in log scale for first (in-plane) bending mode (first three dominant
POMs). (a) POM 1. (b) POM 2. (c) POM 3. −○− Algorithm 1 (θ); −◻− Algorithm 1 (θK); −▵−
Algorithm 2.
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Fig. 69. Convergence of residuals in log scale for second (out-of-plane) bending mode (first three
dominant POMs). (a) POM 1. (b) POM2. (c) POM 3. −○− Algorithm 1 (θ); −◻− Algorithm 1 (θK);
−▵− Algorithm 2

10.4.1 Cracked plate with refined mesh

The first example is the vibration problem of a cracked plate modeled using a refined mesh
near the contact surfaces. The associated FE model is shown in Fig. 67. The plate is dis-
cretized with 972 solid brick elements, and the system has the total number of DOF of 2835.
The number of constraints is 60. The vibration modes of interest in this case study are the
first (in-plane) bending that lies in the frequency range 1,750 Hz⩽ f ⩽ 2,000 Hz, and the
second out-of-plane bending modes in the frequency range 1,362 Hz ⩽ f ⩽ 1,442 Hz. First,
the effectiveness of the proposed BLM selection algorithms is discussed. For comparison, the
(usual) dominant POMs are computed from snapshots of the nonlinear forced responses of
the FE model. Eq. (136) was then checked to show that the chosen BLMs approximate well
the POMs in the sense of least squares, for both algorithms. For Algorithm 6, to obtain
the snapshots of the model with a smaller dimensional model, the nonlinear forced response
analyses of the same cracked plate model with coarser mesh shown in Fig. 62 were per-
formed. The snapshots obtained were then used to construct the POMs of the system with
the coarser mesh, and the POMs were interpolated using Eq. (137). Algorithms 5 and 6
were applied, and the results of Eq. (136) for the first three dominant POMs are shown in
Figs. 68 and 69. First, as shown in Fig. 68, Algorithm 5 with θ and that with θK generate
the BLMs that give the smallest residual for the case with two BLMs. However, the con-
vergence of residuals computed with θK is the slowest for all the POMs shown. In contrast,
even though Algorithm 6 results in larger residual for the first two BLMs, it converges the
fastest among the three methods. For the second (out-of-plane) bending mode, Algorithm 5
with θK generates smaller residuals for the first and the third POMs, as seen in Figs. 69(a)
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(b)

Fig. 70. Nonlinear forced response with various ROMs. (a) First (in-plane) bending mode: — FEM
(2835 DOF); × Craig-Bampton CMS (140 DOF); ▿ Hintz CMS (140 DOF); ◇ 150 ϕo; ◻ 3 POMs;
○ 3 BLMs. (b) Second (out-of-plane) bending mode: — FEM (2835 DOF); × Craig-Bampton CMS
(140 DOF); ▿ Hintz CMS (140 DOF); ◇ 150 ϕo; ◻ 3 POMs; ▴ 6 POMs; + 10 BLMs; ☆ 30 BLMs.

and 69(c). However, as can be seen in Fig. 69(b), Algorithm 5 with both angle metrics do
not produce satisfactory results for the second POM. This indicates that Algorithm 6 is the
only method that consistently shows good convergence for all POMs. This trend was true
for other numerical examples, but the results are not shown here for the sake of brevity.

Next, using the BLMs chosen by Algorithm 6, forced response analyses were performed.
Namely, ROMs were constructed such that x(t) = Bη(t), where B = [b1, . . . ,bnb

], and
the nonlinear forced responses based on Eq. (125) were computed. To compare the pro-
posed ROMs with conventional ROM methods, classical mode superposition method with
x(t) =Φoη(t), as well as CMS methods were examined. The CMS methods have been com-
monly used for solving nonlinear vibration problems with localized nonlinearities. When
CMS methods are applied to dynamical systems with localized nonlinearities, spectral prop-
erties of the linear portion of the system are represented by a set of truncated linear normal
modes with special boundary conditions. The localized nonlinearities are typically handled
by a set of vectors representing local deformations, such as static constraint modes. In this
example, two commonly used CMS methods were examined: (a) a CMS method with con-
straint modes and a truncated set of free-interface normal modes98 (Hintz CMS), and (b) a
CMS method with constraint modes and a truncated set of fixed-interface normal modes118

(Craig-Bampton CMS). For the numerical integration of the FE model, steady-state response
was sought by using a method based on harmonic balance approximations.112,153 For the re-
sults based on ROMs, a variable step-size Runge-Kutta method was used, as was also done
in Sec.10.2.2.

The results of forced response analyses are shown in Fig. 70(a) for the first (in-plane) bending
mode, and Fig. 70(b) for the second (out-of-plane) bending mode. First, as can be seen in
Figs. 70(a) and 70(b), ROMs with the POMs as small as three (0.1% of the original model
size) for the first (in-plane) bending mode, and six (0.2% of the original model size) for
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Table 5
CPU time for the selection algorithms

2*Mode CPU time [s]

Algorithm 1 (θ) Algorithm 2 (θK) Algorithm 2

First bending 2.59×10−2 ± 4.08 × 10−3 5.47×10−2 ± 7.26 × 10−3 7.77×10−1 ± 1.03 × 10−1

Second bending 7.24×10−2 ± 6.82 × 10−3 1.03×10−1 ± 1.24 × 10−2 3.42×10−1 ± 3.52 × 10−2

the second (out-of-plane) bending mode, yielded accurate results. In contrast, CMS ROMs
produced accurate results but required much larger ROMs. Indeed, the Hintz CMS method
produced accurate results for both modes with a ROM of 140 DOF. The Craig-Bampton
CMS ROM with 140 DOF did not even yield accurate results for the first (in-plane) bending
mode, as seen in Fig. 70(a). The inflation of the size of the ROMs based on CMS is mostly
caused by the retainment of all the DOFs on the contact faces as generalized coordinates in
the ROMs. With the standard CMS methods, inclusion of all the DOF on the contact surfaces
is unavoidable, unless only a subset of the DOF are sampled and accuracy is sacrificed.179

Furthermore, as clearly seen in Fig. 70(b), the classical mode superposition method did not
yield accurate results with even more modes than in the CMS methods. It is also noted
that ROMs made solely from Φs do not work at all, because the dynamics is projected onto
vectors where the contact interfaces are closed (Eq. (134)). In contrast, BLMs produced as
accurate results as those from the POMs, while keeping the ROM size as small as three for
the (in-plane) bending mode, and 30 for the (out-of-plane) bending mode. The size of ROMs
based on BLM is always larger than or equal to the size of ROMs based on POMs, because
the POMs are directly obtained from the nonlinear forced response and they are the optimal
linear expression in the sense of least squares. Evidently, BLMs can span the space spanned
by the dominant POMs, D, as can be seen in Figs. 70(a) and 70(b). Particularly, the three
BLMs used for Fig. 70(a) produced results as accurate as the ones using the ROM with
three POMs. The results in Fig. 70(b) require more than six BLMs to capture the response
accurately. However, the ROM size (of six) is still much less than the number of ϕo that
ended up predicting even less accurate results than the ones obtained with the BLMs. Thus,
as long as nd ≪ N , the corresponding BLMs can reduce the system size significantly.

To evaluate the computational time for this procedure, the algorithms were implemented
in the Matlab environment, and the CPU time was measured on a computer with an Intel
Core 2 Duo 2.2 GHz processor and 4.0 GB of RAM. The CPU time was measured for 500
trials for the first and the second bending modes. The results are shown in Tab. 5. As can be
seen in Tab. 5, the CPU time required for Algorithm 1 with θK requires slightly more time
than Algorithm 1 with θ as it requires the inner product between K and y. Furthermore,
Algorithm 2 requires more CPU time (than Algorithm 1) because it requires successive
evaluations of Rij.

10.4.2 Delaminated composite laminates

The second case study considered is a vibration problem of a laminated plate. A square plate
with 0.5 m long edges shown in Fig. 71(a) is used for the investigation. The plate consists of
two layers with different material properties. The thinner plate with thickness h1 = 5 mm is a
steel plate with density ρ1 =7,800 kg/m3, Young’s modulus E1 = 200 GPa, and Poisson’s ratio
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(a) (b)

Fig. 71. Partially delaminated composite plate. (a) Schematics of the model. (b) Sixth vibration
mode of the healthy plate with natural frequency 2621.5 Hz.

ν = 0.3 (material model 1). The thicker plate with thickness h2=15 mm is a silicon carbide
plate (SiC) with density ρ2 =3,230 kg/m3, Young’s modulus E2 = 400 GPa, and Poisson’s
ratio ν2 = 0.17 (material model 2). The plate is discretized with 400 brick elements, resulting
in 1,497 DOF. We further consider that there is a delaminated area between the two plates,
as shown in Fig. 71(a). Namely, the delamination of the layers is modeled by disconnecting
the finite element nodes between the plates in the designated area. The plate is subject to
a clamped-clamped boundary condition along the edges parallel to the x2-x3 plane, where
displacements along x1, x2, and x3 are all constrained. The sixth mode was used for this
study. The corresponding linear normal mode of the healthy plate is shown in Fig. 71(b).
From a mathematical viewpoint, the vibration problem of this structure is the same as the
one treated in Sec. 10.4.1, in the sense that the dynamical system is subject to the nonlinear
force due to intermittent contact. However, it is expected that the response is much more
complicated than the ones observed for the cracked plate, mostly due to the flexibility of the
structure in the plane parallel to the nonlinear forces. The increased complexity is manifested
in the number of dominant POMs extracted from the nonlinear response, as discussed next.

First, snapshots were obtained by nonlinear harmonic response analyses to examine the
number of dominant POMs. Namely, harmonic loadings with unit amplitude were applied
on points on both edges parallel to x1-axis, where the amplitude of vibration was expected
to be the largest in the mode shape of interest, as seen in Fig. 71(b). The frequency of the
loadings was swept in a range from 2,000 Hz to 3,000 Hz. The snapshots were then taken
at 32 discrete time instants equally spaced over one cycle of oscillation when the system
was forced near the resonant frequency. POD was employed and the first three dominant
POMs for both the healthy and the damaged plates are shown in Figs. 72(a) and 72(b).
The corresponding POVs are shown in Fig. 72(c). As can be seen in Figs. 72(a) and 72(b),
the first two POMs are similar to the linear normal modes for both the healthy and the
damaged plate. In contrast, the third POM is very localized at the damaged region, as seen
in Fig. 71(b). Note that this is similar to the trend observed in the POMs for the cracked
plate shown in Figs. 63(b) and 64(b).
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Fig. 72. First three dominant POMs and convergence of POV ratio. (a) Linear harmonic response
of healthy plate. (b) Nonlinear harmonic response of delaminated plate. (c) POV ratio (log scale)
from linear and nonlinear harmonic responses: —○— healthy plate; —×— cracked plate.

Second, ROMs were constructed by using the computed POMs, and forced response com-
putations were performed for different numbers of POMs. Converged results were obtained
when the number of POMs was 19, where a huge drop in the POV ratio can be observed
in Fig. 72(c). The forced response results computed with 2 POMs and 19 POMs are shown
in Fig. 73. Finally, ROMs were constructed based on the BLMs chosen by Algorithm 5, and
forced response calculations were carried out. To highlight the accuracy and the compactness
of the BLM representation, forced response results with the FE model, as well as the ROM
constructed only from Φo are also shown in Fig. 73. As can be seen in Fig. 73(a), both ROMs
with 19 POMs and with 60 BLMs produce very accurate results near the resonant frequency.
Even though the ROM with 60 ϕo also produces accurate results, the results produced from
the ROM with 60 BLMs are much closer to the results of the FE model than those produced
from the ROM with 60 ϕo alone.

It is noteworthy that the results computed from the ROMs with POMs do not show good
agreement at lower frequency even with 19 POMs, as can be seen in the lower frequency
region in Fig. 73(a). This is because the POMs were constructed based on the snapshots
taken only at the resonant frequency. Hence, the POMs are not guaranteed to form a good
basis at frequencies far from the resonance, which is typical for ROMs constructed using
POMs. In contrast, the ROM constructed using BLMs shows excellent agreement over the
entire frequency range of interest. This indicates that the BLMs could effectively embed
NNMs for different frequencies, which is difficult to achieve with the ROMs based on the
POMs.

In general, the dominant POM subspace changes not only with the frequency but also with
the amplitude. As was shown in this example, the BLM-based ROMs can capture the fre-
quency response very well over the frequency range of interest. In this paper, the variations in
the amplitude of the excitation has not been investigated. Nonetheless, amplitude variations
in general affects the behavior of piecewise-linear oscillators especially when there are static
gaps at the discontinuous surfaces.88 However, the initial gaps at the discontinuous surfaces
are all zero for the specific cases presented in this paper (i.e., g0i = 0, ∀i, in Eq. (120)).
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Fig. 73. Forced response results with ROMs. (a) Forced response. (b) Magnified view near the
resonant peak. ---- Healthy FEM; —— Delaminated FEM (linear response ignoring contact);
—○—,2 POMs; —△— 19 POMs; —▽— 20 BLMs; —×— 60 ϕo; —◻— 60 BLMs;—— Delaminated
FEM, nonlinear harmonic response (1497DOF).

For such cases, it is known that the vibration response can be scaled with the excitation
amplitude due to the positive homogeneity of the piecewise linearity.93,153 Namely, if the
excitation of interest can uniformly be scaled as αQ(t) (where α ∈ R+), then the response
can also be scaled as αx(t). Hence, the POM subspace computed from the system response
due to Q(t) is the same as the POM subspace computed from the system response due to
αQ(t). This is because the POMs for Q(t) are computed using x(t) whereas the POMs for
αQ(t) are computed using αx(t). Thus, the proposed approach can handle variations in the
excitation amplitude (at least ones that are uniform scaling) as long as the BLM-based ROM
contains the POM subspace. However, examining the effects of more general variations in
the amplitude of excitation on the accuracy of the response predicted with the BLM-based
ROMs is still necessary for further expanding the capability of this ROM methodology (and
that is beyond the scope of this paper).
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.

11 REDUCED-ORDER-MODELING FOR NONLINEAR ANALYSIS OF CRACKED
MISTUNED MULTI-STAGE BLADED DISK SYSTEMS
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With the concurrent advancement of computer hardware and software with sophisticated
physical and mathematical methodologies represented by finite element method, model-based
vibration analysis has been extensively applied to the dynamic analysis of turbomachinery
rotors. Most turbine engine rotors consist of multiple stages of bladed disks. Vibration mod-
eling of rotors is a classic problem, yet it has been an active research area for structural
dynamicists both in industry and academia. In this paper, a novel reduced order modeling
method is proposed for the vibration problems of multi-stage bladed disk assemblies, which
possess a cracked blade on one of the stages, and is subject to blade-to-blade small mistun-
ing. The methodology allows the use of an efficient cyclic-symmetry based reduced order
modeling method for mistuned but non-cracked stages. The modeling framework is devel-
oped by generalizing the modeling procedure proposed by Song et al.180 and is described in
the Mathematical Formulation section.

This paper is organized as follows. First, a brief overview of multi-stage turbomachinery
analysis is provided. Then, a mathematical description of the proposed modeling approach
is described. Next, the proposed methodology is validated by using a numerical example
of an industrial multi-stage bladed disk system. In particular, nonlinear forced response
calculations are performed, and the applicability of the proposed method to the vibration
problem of multi-stage bladed disks is demonstrated. Finally, conclusions of the work are
given.

11.1 Background

An extensive literature survey of linear and nonlinear vibration modeling of mistuned bladed
disk systems is given by Castanier and Pierre.181 Bladh et al.182 investigated the effects of
multi-stage coupling on the dynamics of bladed disks with blade mistuning. It was pointed
out that the mistuning due to inter-stage coupling is inherent in multi-stage systems. Fur-
thermore, it was reported that the inter-stage coupling may be significant and cannot be
neglected when the frequency ranges of interest pass veering regions, where the motion of
the disk is dominant. A novel reduced order modeling technique for multi-stage bladed disk
systems was proposed by Song et al.,183 which enables the use of stage-wise reduced order
models (ROMs) by cyclic-symmetry. The method was then incorporated184 with an efficient
mistuning modeling method called component mode mistuning (CMM).185 It was success-
fully applied to the modal parameter identification of multi-stage bladed disks,186 and also
to mistuning identification and structural health monitoring.180 Laxalde et al.187 also pro-
posed a method to deal with multi-stage bladed disk systems with a similar concept as
that proposed by Song et al.,180 and successfully applied their method to modal analysis
and forced response calculations for industrial bladed disks.188 However, in that work each
stage was assumed to be tuned. Sternchüs et al.189 extended the method proposed by Lax-
alde et al.,187,188 by representing the inter-sector elements as super-elements, and by using
inter-stage ring elements. The methodology presented in this paper is a generalization of the
method proposed by Song et al.,180 which applies the inter-stage compatibility by Fourier
coefficients, and handles the mistuning with CMM.185

Sinha190 also developed a lumped parameter model of mistuned multi-stage models where
inter-stage coupling is handled by discrete springs, and conducted Monte Carlo simulations
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on these models. Although the model was shown to be able to simulate the overall dynamics
of the multi-stage rotors, its applicability to industrial models with realistic geometry was
not discussed.

In addition to the modeling of blades, there have also been efforts to accurately capture the
coupling effects between the torsional vibration of shafts and blades. For example, Chatelet
et al.191 investigated the complicated dynamics of rotors and shafts by assuming that all
the rotors and shafts are axisymmetric and by applying cyclic-symmetry analysis. Turhan
and Bulut192 considered the coupling between shaft torsion and blade bending vibrations by
using a qualitative model of multi-stage bladed disks, where the disks are modeled as rigid
and the blades are modeled as Euler-Bernoulli beams. Their eigenanalysis (of the analytical
model) indicated that there are two types of modes: the coupled modes where shaft torsion
and blade bending are coupled, and the rigid shaft modes where the dominant motion is a
rigid-body motion of the disk and blades. They also reported that the coupled shaft torsion
and blade bending modes are subject to eigenvalue loci veering.

Rzadkowski and Sokolwski,193 and Rzadkowski and Drewczynski194 examined the free re-
sponse of an eight bladed disk assembly connected by a flexible shaft. For that specific
model, they reported that the bladed disk modes of nodal diameters zero, one and two are
affected by the shaft flexibility, and multi-stage effects are visible. However, they assumed
that the bladed disks are all tuned and have the same number of blades. That is a significant
drawback which means that the entire multi-stage bladed disk system has to be cyclically
symmetric.

Segùı and Casanova195 also developed a reduced order modeling method for a (single stage)
mistuned bladed disk mounted on a shaft. The method utilizes the Craig-Bampton com-
ponent mode synthesis (CMS) method118 where the blades, the disk, and the shaft are
considered to be separate substructures. As was also reported by other researchers, their
work suggested that the stage-wise modal analysis is not enough for accurately predicting
the global dynamic response of rotating turbomachines. Later, Boulton and Casanova196

extended the modeling approach of Segùı and Casanova195 to the dynamical modeling of a
two-stage, mistuned, industrial gas turbine model, and showed that the interaction between
the bladed disk and shaft contributes to the variations in the modes predicted from the
stage-wise modal analysis.

All the references cited above deal with linear vibration problems. Nonlinearity comes from
various sources in the dynamics of turbomachinery rotors. To date, only a few attempts
have been made to deal with a multi-stage bladed disk assembly with nonlinearities. Laxalde
and Thouverez197 investigated the modeling of friction-ring dampers, which cause strong
nonlinearity due to friction between the rotors and the dampers. The nonlinear forced re-
sponse analysis was performed based on a multi-harmonic hybrid-frequency time domain
method with an augmented Lagrangian approach.102 They showed the applicability of the
reduced order modeling of the multi-stage bladed disks based on cyclic-symmetry, and the
multi-harmonic hybrid-frequency time domain method.

There have been only a few papers published to date regarding the issue of vibration problems
of bladed disks with cracked blades. Saito et al.198 investigated the effects of a cracked
blade on the forced response vibration of a single stage mistuned bladed disk. They revealed
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that there can be a cracked-blade-localized vibration response for some families of modes.
Kharyton et al.199 also investigated the effects of a cracked blade on the vibration response
of a bladed disk without blade-to-blade mistuning.

11.2 Mathematical Formulation

In this section, the proposed reduced order modeling method for multi-stage bladed disk
assemblies is described. When modeling the multi-stage bladed disk assemblies, the challenge
is that the entire multi-stage assembly does not possess cyclic-symmetry because the stages
do not necessarily have the same number of blades. Therefore, any reduced order modeling
method based on cyclic-symmetry suffers from this issue. Furthermore, efficient modeling
of mistuning is crucial for statistical analyses such as Monte-Carlo simulations for many
mistuning patterns. The proposed method addresses these challenges.

Recently, efficient mistuning modeling methods for a single stage bladed disk have been re-
ported. For example the CMM approach proposed by Lim et al.185 was shown to be effective
and accurate for single stage bladed disks. Song et al.180 successfully applied CMM for the
modeling of multi-stage bladed disks. The methodology is capable of modeling the mistuned
bladed disks based on a stage-wise cyclic CMS method, and the application of compati-
bility conditions at the inter-stage boundaries using Fourier basis functions. In this paper,
this modeling framework is further generalized for the cases where the system consists of a
mixture of stages that in the absense of small blade-to-blade mistuning can be modeled by
cyclic-symmetry, and those that cannot be modeled by cyclic-symmetry. Herein, a bladed
disk that can be modeled via cyclic-symmetry is referred to as a cyclic stage. Strictly speak-
ing, if there is blade-to-blade mistuning, no stage possesses cyclic-symmetry. However, the
small mistuning can be added to a stage modeled by cyclic-symmetry by using CMM.185

Furthermore, the stage that cannot be modeled via cyclic-symmetry is referred to as a non-
cyclic stage. These stages cannot be modeled via cyclic-symmetry for various reasons, e.g.,
the presence of large geometric variations, symmetry-breaking components, or a cracked
blade. In this paper, the disk with a cracked blade is treated as a non-cyclic stage.

The modeling framework is designed such that it is capable of modeling each stage separately,
and it can handle any small mistuning pattern efficiently. First, the model reduction method
is formulated for cyclic stages (with distinct number of blades). Then it is formulated for
non-cyclic stages. Finally, the assembly of the stage-wise ROMs is discussed.

11.2.1 Reduced Order Modeling of Cyclic Stages

Modeling of Cyclic Stages

Let us assume that stage 1 of a multi-stage system is cyclic and consists of N identical
sectors that are disconnected. Fig. 74(a) shows a cyclic stage where N is equal to 25, and
Fig. 74(b) shows one of the N sectors that make up the stage. Let x(t) denote the nodal
displacement of all nodes on all sectors. Their kinetic and potential energies can be written as
T = (1/2)ẋTμ1ẋ and U = (1/2)xTκ1x, where μ1 and κ1 represent the collections of matrices
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inter-stage boundary
(b – partition)
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independent surface of 
sector (a– partition)

disk (G – partition)

dependent surface of 
sector (b– partition)

(c)

Fig. 74. (a) Cyclic stage with N sectors, (b) single sector of the cyclic stage, (c) blade and disk
partitions of the sector model.

of the disconnected sectors, i.e.,

μ1 = IN ⊗M,

κ1 = IN ⊗K,
(139)

where M and K denote the mass and the stiffness matrices of a sector, IN is an identity
matrix of size N × N , and ⊗ denotes a Kronecker product. Partitioning the displacement
vector such that they are ordered based on the order of the sectors, i.e., x = [xT

1 , . . .x
T
N]T,

it is known180,185 that the displacements of the nth sector can be exactly described by the
following Fourier series

xn = 1√
N
u0 +√ 2

N

Ñ−1∑
h=1

(uhc cos(n − 1)φh + uhs sin(n − 1)φh) + 1√
N
(−1)n−1uÑ , (140)

where φh = 2πh/N , n = 1, . . . ,N and Ñ = N/2 if N is even, or Ñ = (N − 1)/2 if N is odd. u
denotes a vector of Fourier coefficients, subscripts c and s denote cosine and sine components
respectively, and superscripts denote the harmonic number. Also, the last term in Eq. (140)
does not exist when N is odd. The transformation from the Fourier coefficients ũ, to physical
coordinates x can be written as a linear map

x(t) = (FN,N ⊗ INs)ũ(t), (141)

where
ũ = [(u0)T, (uhc )T, (uhs)T, . . . , (uÑ)T]T , (142)

and Ns is the number of degrees of freedom (DOFs) in a sector. For the sake of brevity,
let us now partition the nodal displacement vector for a sector, and corresponding Fourier
coefficients based on the physical partitions of the finite element model (FEM). Namely,
the Fourier coefficients are partitioned as uh = [(uhΔ)T, (uhΓ)T, (uhb )T]T , where Δ, Γ and
b correspond to the DOF sets for the nodes of the blade part, disk part, and the inter-
stage boundary as shown in Fig. 74(c). Substituting Eq. (142) into the kinetic and potential
energies, the Lagrangian of this stage can be expressed with the Fourier coefficients as

L = 1

2
ẋTμ1ẋ − 1

2
xTκ1x

= 1

2
˙̃u
T(FN,N ⊗ INs)T(IN ⊗M)(FN,N ⊗ INs) ˙̃u − 1

2
ũT(FN,N ⊗ INs)T(IN ⊗K)(FN,N ⊗ INs)ũ.

158



Hamilton’s principle requires the action integral be stationary, i.e.,

δ∫ t2

t1
L(ũ, ˙̃u)dt = 0. (143)

Without any constraint between the (identical) sectors, this yields the following set of equa-
tions of motion

Mü0 +Ku0 = 0,⎛⎜⎝M 0

0 M

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
ühc

ühs

⎤⎥⎥⎥⎥⎥⎦ +
⎛⎜⎝K 0

0 K

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
uhc

uhs

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
0

0

⎤⎥⎥⎥⎥⎥⎦ , for h = 1, . . . , Ñ − 1,
MüÑ +KuÑ = 0.

At this point, all the sectors are assumed to be disconnected. However, the symmetry in the
circumferential direction implies that the nodal displacement field of one side of a sector is
dependent on that of the other side of the sector. Furthermore, the constraints are dependent
on the harmonic number. Namely, the equations of motion are derived by the extremization
of the action integral in Eq. (143) subject to the constraints

uhc,β = uhc,α cosφh + uhs,α sinφh,
uhs,β = −uhc,α sinφh + uhs,α cosφh, (144)

where α represents the boundary considered to be independently moving (on one side of the
boundary), β represents the boundary considered to be dependent on the movement of the
α boundary (due to the constraints). After the application of Eq. (144) to Eq. (143), the
equations of motion of the hth harmonic number can be written in a partitioned format as

⎛⎜⎜⎜⎜⎜⎝
Mh

i,0 Mh
i,1(Mh

i,1)T Mh
i,0

Mh
ib

(Mh
ib)T Mh

b

⎞⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ühc,i

ühs,i

ühb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
⎛⎜⎜⎜⎜⎜⎝

Kh
i,0 Kh

i,1(Kh
i,1)T Kh

i,0

Kh
ib

(Kh
ib)T Kh

b

⎞⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
uhc,i

uhs,i

uhb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (145)
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where

Mh
i,0 = ⎛⎜⎝Mαα + cosφh(Mβα +Mαβ) +Mββ MαΔ + cosφhMβΔ

MΔα + cosφhMΔβ MΔΔ

⎞⎟⎠ ,
Mh

i,1 = ⎛⎜⎝(Mαβ −Mβα) sinφh sinφhMβb

sinφhMΔβ 0

⎞⎟⎠ ,

Mh
ib =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mαb + cosφhMβb − sinφhMβb

MΔb 0

sinφhMβb Mαb + cosφhMβb

0 MΔb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Mh
b = ⎛⎜⎝Mbb 0

0 Mbb

⎞⎟⎠ ,
and i denotes the set of internal DOF defined as i ≜ {α,Δ,Γ}, and b denotes the set of DOF
on the inter-stage boundary. The structure of the stiffness matrix is omitted here for the
sake of brevity because it is the same as the one for the mass matrix.

Reduced Order Modeling of Cyclic Stages by the Craig-Bampton Method

For the reduction of the cyclic stages, the reduction method proposed by Song et al.183 is
employed. That method is based on the cyclic Craig-Bampton method developed by Bladh
et al..6 Namely, the displacement field of the entire stage x(t) is assumed to be represented
as a linear combination of fixed-interface normal modes and constraint modes. The model
reduction method with these types of modes is usually referred to as the Craig-Bampton
method.118 The fixed-interface normal modes are a truncated set of normal modes of the
entire stage with all DOFs on the inter-stage boundary being fixed. A constraint mode
for a stage is computed as the static deformation shape of the entire stage due to a unit
displacement applied to one of its DOF on the inter-stage boundary (while all the other DOFs
on the inter-stage boundary are fixed). A complete set of constraint modes is obtained by
repeating such computation for all DOFs on the inter-stage boundary. One disadvantage
of this method is that the computation of these constraint modes becomes prohibitively
expensive as the model size grows. However, by the application of cyclic-symmetry, these
modes can be efficiently computed by solving eigenvalue problems and static problems of
a sector and a duplicated sector alone, with appropriate inter-sector boundary conditions.
Recalling that the set of DOFs for the inter-stage boundary are denoted by a subscript b,
and that all the other DOFs are denoted by a subscript i, the Fourier coefficients can be well
approximated by the following coordinate transformation⎡⎢⎢⎢⎢⎢⎣

uhb

uhi

⎤⎥⎥⎥⎥⎥⎦ ≃
⎛⎜⎝INb

0

Ψh
i Φh

i

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
uhb

ph

⎤⎥⎥⎥⎥⎥⎦ , for h = 0, . . . , Ñ , (146)

where Nb is the number of DOFs on the inter-stage boundary (the b-partition), the matrices[INb
, (Ψh

i )T]T and [0, (Φh
i )T]T are called the constraint modes and the fixed-interface normal
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modes for harmonic number h, and ph is the set of modal coordinates associated with the
fixed-interface normal modes.

Assuming harmonic motion and substituting u(t) = ϕeωt into Eq. (145), then the kth fixed-
interface normal mode for harmonic number h can be computed by solving the following
eigenvalue problem

⎛⎜⎝ Kh
i,0 Kh

i,1(Kh
i,1)T Kh

i,0

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
(ϕhc,i)(ϕhs,i)

⎤⎥⎥⎥⎥⎥⎦k = λk
⎛⎜⎝ Mh

i,0 Mh
i,1(Mh

i,1)T Mh
i,0

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
(ϕhc,i)(ϕhs,i)

⎤⎥⎥⎥⎥⎥⎦k , for k = 1, . . . ,mh
1 , (147)

where λk = ω2
k, and mh

1 denotes the number of free-interface normal modes to be kept for
stage 1.

In contrast, the i-partition of the constraint modes can be computed by solving the following
static problem for Ψh

c,i and Ψh
s,i

⎛⎜⎜⎜⎜⎜⎝
Kh
i,0 Kh

i,1(Kh
i,1)T Kh

i,0

Kh
ib

(Kh
ib)T Kh

b

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
Ψh
c,i

Ψh
s,i

INb

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
0

0

Rh
b

⎞⎟⎟⎟⎟⎠ , (148)

where Rh
b represents the forces applied to the inter-stage boundary, which cause a unit

displacement at one DOF while keeping the rest of the DOFs along the boundary fixed,
and Nb is the number of DOFs along the inter-stage boundary for the sector. Defining p̃ ≜[(u0)T, (p0)T, . . . , (uÑ)T, (pÑ)T]T, the linear transformation between the Fourier coefficients
for all harmonic numbers ũ(t) and the generalized coordinates p̃(t) can be written as

ũ(t) ≃ΦCB p̃(t), (149)

where

ΦCB =h=0,...,Ñ ⎛⎜⎝INb
0

Ψh
i Φh

i

⎞⎟⎠ , (150)

and h=0,...,Ñ(⋅) designates a block-diagonal matrix with the arguments being the hth block
of a matrix. Combining the transformations from Eq. (141) and Eq. (149), the physical
displacement of the entire cyclic stage can be approximated by p̃(t), i.e.,

x(t) ≃ (FN,N ⊗ INs)ΦCB p̃(t), (151)

where the size of the vector p̃(t) is much less than that of x(t). It is noted that the motion
of the inter-stage boundary is now represented as

xb(t) = (FN,N ⊗ INb
)ũb(t). (152)

11.2.2 Reduced Order Modeling of Non-Cyclic Stages

Let us assume that stage 2 consists ofM sectors and does not possess cyclic-symmetry. Fig. 75
shows stage 2 where M equals 23. Furthermore, let us also assume that the dynamics of this
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inter-stage boundary
(b – partition, Nb DOFs)

μ2 , k2

~

Fig. 75. Non-cyclic stage with M sectors.

stage cannot be projected onto the tuned system modes for this stage. Hence, the model
may not be reduced by a method based on cyclic-symmetry as done in the previous section.
In this paper, stage 2 is assumed to have a cracked blade which also induces a nonlinearity
caused by the intermittent contact at the crack surfaces. Let all FE nodal displacements of
stage 2 be denoted by y(t). The equation of motion can be written as

μ2ÿ(t) +κ2y(t) = f(y), (153)

where μ2 and κ2 denote mass and stiffness matrices, and f denotes a vector of nonlinear
forces due to the intermittent contact at the crack surfaces. The nodal displacement vector
can be partitioned as

y(t) = ⎡⎢⎢⎢⎢⎢⎣
yb(t)
yi(t)

⎤⎥⎥⎥⎥⎥⎦ , (154)

where yb contains all the displacements of the nodes on the inter-stage boundary, and yi
contains the rest of the internal DOFs. There are various ways to reduce the number of
DOFs in the i-partition. In this paper, the motion of y is expressed as a linear combination
of static constraint modes Ψ associated with the inter-stage boundary, and a set of modified
free-interface normal modes Φ̂ as was employed by Saito et al..198 Namely,⎡⎢⎢⎢⎢⎢⎣

yb(t)
yi(t)

⎤⎥⎥⎥⎥⎥⎦ ≃
⎛⎜⎝INb̃

0

Ψi Φ̂i

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣
yb(t)
q(t)

⎤⎥⎥⎥⎥⎥⎦ , (155)

where Nb̃ is the number of DOF along the inter-stage boundary for stage 2, Φ̂i = Φii −
ΨiΦib, with Φii and Φib denoting the interior and the inter-stage boundary partitions of Φ
respectively. Herting99 provides a detailed formulation of this type of CMS.

11.2.3 Inter-Stage Coupling

After constructing the ROMs of all cyclic and all non-cyclic stages, the next step is to assem-
ble the stages, which means that the geometric compatibility conditions should be applied
to the inter-stage boundary nodes. However, the FE meshes of all stages do not necessarily
match at the inter-stage interfaces. Most importantly, the stages do not necessarily have the
same number of sectors, which means that the stages do not possess the same periodicity.
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Fig. 76. Inter-stage boundary (b-partition) for a cyclic stage (i denotes a sector, j denotes a radial
line segment).

In this paper, the method proposed by Song et al.183 is extended for the case with coupling
between cyclic and non-cyclic stages. Namely, the motion of the inter-stage nodes are pro-
jected onto harmonic functions that are periodic in the circumferential direction. For the
cyclic stage, let us first partition the displacement vector for the inter-stage boundary DOF
as follows

xb =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xb1⋮
xbN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (156)

where xbi corresponds to the inter-stage boundary partition of the nodal displacements of
the ith sector. We also assume that the FE nodes of the inter-stage boundary of each sector
are aligned such that the nodes can be divided into another kind of groups of nodes having
the same angle in a cylindrical coordinate system. The number of such groups in each sector
is denoted here as Z, and each group is referred to as a radial line segment in this paper. This
means that the inter-stage boundary of stage 1 consists of NZ radial line segments. Each
radial line segment for stage 1 is considered to have Nr DOF, and each radial line segment
for stage 2 is considered to have Mr DOF. The schematic depicting the inter-stage boundary
and the radial line segments is illustrated in Fig. 76. Namely, xb can also be partitioned as

xb =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xr1⋮
xrNZ

,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(157)

where the subscript r stands for the radial line segment. Note that there is a relationship
between xbi and xrj such that xbi contains xrj for 1 + (i − 1)Z ⩽ j ⩽ iZ.
Next, we assume that the motion of the jth radial segment can be approximated by a trun-
cated Fourier series. Namely, defining θh ≜ 2πh/(NZ),

xrj ≃ 1√
B
z0 +√ 2

B

P−1∑
h=1

(zhc cos(j − 1)θh + zhs sin(j − 1)θh) + 1√
B
(−1)j−1zP , (158)

where z represents the Fourier coefficients with superscript denoting the harmonic number
and subscript denoting either cosine or sine term, and B is the number of basis harmonic
functions used for the Fourier expansion. Note that P = B/2 if B is even. If B is odd,
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P = (B − 1)/2 and the last term in Eq. (158) does not exist. Therefore, in matrix form,

xb =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xr1⋮
xrNZ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≃ (FNZ,B ⊗ INr) z̃, (159)

where recall that Nr is the number of DOF per radial line segment for stage 1, FNZ,B is a
NZ ×B Fourier matrix, and z̃ = [(z0)T, (zhc )T, (zhs)T, . . . , (zP )T]T. Inverting Eq. (152) and
combining it with Eq. (159),

ũb(t) ≃ (FN,N ⊗ INb
)T (FNZ,B ⊗ INr) z̃. (160)

For the non-cyclic stage (stage 2), the displacement vector of the inter-stage boundary yb
can be partitioned as

yb =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
yb1⋮
ybM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (161)

Furthermore, as was done for the cyclic stage (stage 1), ybi can also be partitioned based on
the radial line segments, i.e.,

ybi =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
yr1⋮
yrW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (162)

where W is the number of radial line segments per sector. Next, the motion of the inter-
stage boundary is represented by a truncated Fourier series assuming that the number of
basis harmonic functions is the same as the one used for the cyclic stage. Namely,

yb =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
yr1⋮
yrMW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≃ (FMW,B ⊗ IMr) w̃, (163)

where w̃ is a vector of Fourier coefficients, i.e., w̃ = [(w0)T, (wh
c )T, (wh

s )T, . . . , (wP )T]T.
Recall that Mr is the number of DOF per radial line segment for stage 2. In this paper, it is
assumed that Nr =Mr.

At this point, the displacement of the inter-stage boundary of the cyclic and non-cyclic
stages are represented by vectors of Fourier coefficients z̃ and w̃. The geometric compatibility
condition is now enforced as

z̃ = w̃. (164)

Even though the compatibility conditions are enforced approximately, as long as a sufficient
number of Fourier coefficients B are used, the geometric compatibility conditions are very
well imposed.180
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cracked blade 
in stage 2

mistuning in stage 1

Fig. 77. FEM of multi-stage turbomachinery rotor.

11.3 Analysis

Two ROMs were developed using the methodology presented in the Mathematical Formula-
tion section and are numerically validated in this section. Both ROMs were developed only
from FEMs of single stage models created in ANSYS. To validate the ROMs, two full-order
multi-stage FEMs were also created in ANSYS. These two multi-stage systems differ only
in stage 2. A full-order multi-stage FEM of one of the two multi-stage systems is shown in
Fig. 77.

Stage 1 of both full-order multi-stage FEMs has 25 identical blades and 63,996 DOFs. Stage
1 also has blade-to-blade small mistuning (in the blade stiffness) with standard deviation
of 0.04%. Stage 2 of one of the full-order multi-stage FEM has 23 identical blades and
74,886 DOFs. Stage 2 of the other full-order multi-stage FEM has 23 identical blades (one
of which has a cracked blade), and has 76, 404 DOFs. The crack occurs at the leading edge
of one of the blades and has a length of about one third of the chord.

To create the multi-stage FEMs, multi-point constraint equations were applied at the inter-
stage boundaries to connect the individual stages in ANSYS. The total number of DOFs for
the FEM of the multi-stage system with a crack is 138,006. The corresponding ROM for the
system with a crack contains 705 DOFs (0.5% of the original FE size). The total number of
DOFs for the multi-stage system without a crack is 136,488. The corresponding ROM for
the system without a crack is 592 DOFs (0.4% of the original FE size). Each ROM uses 23
basis functions to model the dynamics at the interface between stages (as discussed in the
Inter-Stage Coupling section).

The ROMs were developed to be valid over a frequency range of 0 − 20 kHz. The bulk of
the results below are focused on a narrower frequency range of 0− 5 kHz, where multi-stage
modes and crack effects interact. In this work, multi-stage modes refer to modes that are
not dominated by motion in a single stage, rather both stages respond at these frequencies.
Note that the effects which multi-stage phenomena have on the dynamics in the presence
of cracks are of particular interest since this topic has not yet been explored. Also, in this
work nonlinear forced response results were computed for the ROMs using a hybrid fre-
quency/time domain method, which prevents inter-penetration at the crack surfaces using a
penalty coefficient as done by Saito et al..198
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Fig. 78. (a) Natural frequencies of the ROM (+) and the FEM (o). (b) Relative error in the natural
frequencies between the FEM and the ROM.

11.3.1 Model Validation

This section demonstrates the accuracy of the ROMs with respect to the full FEMs. To
show the accuracy in the frequencies of the ROM of the system with a crack, the first
200 frequencies of the ROM and the FEM are plotted in Fig. 78(a). The corresponding
relative error in these frequency estimates is less than 0.05% for all 200 frequencies, and is
shown in Fig. 78(b). These frequencies are computed under the assumption that the crack is
always open so that a linear analysis (allowing inter-penetration of the crack surfaces) can
be carried out using the full FEM. Note that fully nonlinear forced response results have
also been obtained and are discussed in the next section.

To show the overall accuracy of the ROMs, linear forced response analyses were conducted
on the FEMs and ROMs. A proportional damping C = αM+βK was applied to the system.
Here, C is the damping matrix with α = 1.9295 × 10−2 and β = 5.1340 × 10−5. Engine order
1 excitation was applied to nodes at the blade tips of each stage. Since the multi-stage
modes were of particular interest, forced responses were calculated at 1,024 evenly sampled
frequencies from 2.8 kHz to 3.4 kHz. The response of the excited nodes were calculated for
the FEMs and the ROMs. The maximum response norm of all the excited nodes for each
stage was then calculated and the results are summarized in Figs. 79 and 80. Fig. 79(a)
shows the forced response for stage 1 and Fig. 79(b) shows the forced response for stage 2
for the FEM and ROM for the system without a crack. These plots show the accuracy of the
ROM with the largest relative error at the peaks being approximately 1% for both stage 1
and stage 2. Similarly, Fig. 80(a) shows the forced response of stage 1 and Fig. 80(b) shows
the forced response of stage 2 for the FEM and ROM of the system with a crack. Again, the
ROM performs well with a relative error at the peaks of less than 1% for both stage 1 and
stage 2.

11.3.2 Multi-stage Nonlinear Forced Response Analysis

This section explores the interaction of multi-stage and crack effects. Fig. 81 displays the
multi-stage forced response results for three different cases. The first case is a forced response
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Fig. 79. Comparison of the multi-stage forced response for the FEM (-) and the ROM (o) of the
system without a crack for (a) stage 1 and (b) stage 2.

analysis for the ROM of the system without a crack. The second case corresponds to a forced
response analysis using a ROM of a system with a crack and a linear analysis (allowing inter-
penetration). The final case corresponds to a forced response using a ROM of a system with
a crack and a nonlinear analysis (not allowing inter-penetration at the crack surfaces as done
by Saito et al.198). The results for stage 1 are shown in Fig. 81(a) and the results for stage
2 are shown in Fig. 81(b).

The differences between the responses for stage 1 are not nearly as large as the differences
for stage 2, since the crack is located in stage 2. For stage 1, the largest response for the
peak near 3.2 kHz is predicted by the nonlinear forced response analysis. This response is
only about 5% larger than the response of the system without a crack and 25% larger than
the linear forced response.
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Fig. 80. Comparison of the multi-stage forced response for the FEM (-) and the ROM (o) of the
system with a crack for (a) stage 1 and (b) stage 2.

For stage 2, the structural response is as expected for all three cases. The system without a
crack is the stiffest and has the lowest amplitude. The linear forced response for the system
with a crack is the softest and has the largest amplitude. In fact, the peak response near
3.2 kHz is almost eight times that of the system without a crack. The nonlinear forced
response amplitude for the system with a crack is between the other two cases. However, the
range of amplitudes between the two cases is very large. Hence, performing the nonlinear
analysis is very important in obtaining an accurate response for the stage with a crack. For
the peak response near 3.2 kHz, the nonlinear analysis yields a response of just 25% of that
obtained using a linear analysis, but double that of the system with no crack.

A plot of the mode shape corresponding to the natural frequency at 3.21 kHz for the FEM
of the multi-stage system with a crack is shown in Fig. 82 to better understand the results
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Fig. 81. Comparison of the multi-stage forced response for the ROM of the system without a crack
(-), for the ROM of the system with a crack using a linear analysis (o), and for a ROM of the
system with a crack using a nonlinear analysis (*) for (a) stage 1 and (b) stage 2.

in Fig. 81. Fig. 82 shows that the motion in stage 1 is distributed throughout the stage,
which explains why the response of stage 1 is not greatly affected by the crack in stage 2.
In contrast, the motion of stage 2 is localized to the cracked blade; therefore a full nonlinear
analysis is critical in accurately capturing the response of the cracked blade.

To show the importance of the multi-stage modeling, a single-stage analysis was conducted
on stage 2 (with both of its inter-stage surfaces being fixed). The results are summarized in
Fig. 83. The forced response was computed for 4, 092 evenly spaced frequencies in the range
1.5−4.5 kHz. This larger range was chosen since the response is very low. That is because the
modes in the range 2.8 − 3.4 kHz are multi-stage modes and are not present when a single-
stage analysis is performed. The low level response in the range 2.8 − 3.4 kHz demonstrates
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Fig. 82. Mode shape corresponding to a frequency of approximately 3.21 kHz from the FEM of the
multi-stage system with a crack.
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Fig. 83. Comparison of the forced response for stage 2 only for the ROM of a stage that does not
have a crack (-), for the ROM of the stage with a crack using a linear analysis (o), and for a ROM
of the same stage with a crack using a nonlinear analysis (*).

the need for multi-stage modeling for accurately capturing the dynamics. Three cases are
plotted (nonlinear forced response of the stage with a crack, linear forced response of the
stage with a crack, and the response of the same stage when it does not have a crack). The
behavior is similar to the results in Fig. 81 in that the nonlinear forced response is bounded
by the linear forced response and the response of the system without a crack.

A single-stage analysis was also conducted on stage 1 to show the importance of multi-
stage modeling. The results are summarized in Fig. 84. Three cases are plotted. The first
corresponds to the response of just stage 1 (with both of its inter-stage surfaces being fixed).
The next two cases correspond to the response of stage 1 when a full multi-stage analysis
is conducted. One of these latter two cases corresponds to the system where there is no
crack in stage 2, and the other when there is a crack in stage 2 (and a nonlinear analysis is
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Fig. 84. Effect of multi-stage versus stage-wise only analysis. Stage 1 only forced response (-), mul-
ti-stage results for a system without a crack (o), and nonlinear forced response for the multi-stage
system with a crack (*).

conducted). It is evident that for stage 1 the effect of single versus multi-stage modeling is
very important. However, the effect of modeling the crack (in stage 2) is not that important
for stage 1 (although it is important for predicting the response of stage 2).
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12 A STATISTICAL CHARACTERIZATION OF THE EFFECTS OF MIS-
TUNING IN MULTI-STAGE BLADED DISKS

172



A significant amount of research has been conducted on the vibration response of bladed
disks. An extensive review of this research was conducted by Castanier and Pierre.181 Early
work in the area of vibration of bladed disks focused on simple lumped parameter models of
single stage bladed disks.2–4,200,201 These models were developed in part to understand the
effects of mistuning. Mistuning is a random variation in the structural properties of a system,
which can be caused by manufacturing tolerances and/or operational wear. Even small levels
of mistuning can lead to a localization in the vibration energy to a few blades in the disk,
and this localization can lead to a dramatic increase in the amplitude of the force response
of these blades. While these simple lumped parameter models were useful in providing a
qualitative understanding of certain features of the system such as mistuning, more accurate
finite element models (FEMs) of the system were needed to obtain quantitative results. Due
to the size of these FEMs, reduced order models (ROMs) of the system were constructed to
conduct statistical analyses on these systems.

Early ROMs used component mode synthesis118,202 (CMS), which breaks the systems into
components for faster analysis, and combines them at the interface using a fixed-interface,
free-interface or hybrid method. Early work using free-interface CMS203 was conducted by
Irretier204 and Zheng and Wang205 who found significant savings in computational time
relative to the parent FEMs. Eventually, powerful ROMs were developed that have a size
of the order of the number of blades in the system yet retain high accuracy over a given
frequency range. Yang and Griffin10 had the first such approach called the subset of nominal
modes method. This method used the fact, that when the mistuning is small, the tuned
system modes provide an excellent basis for the vibration of the mistuned system. Later,
Lim et al.185 introduced a method called component mode mistuning (CMM), which uses
both tuned system modes and blade component modes to construct ROMs. This method
handles various types of mistuning in a systematic manner by modeling the mistuning in the
blade alone using cantilevered blade modes.

While a great deal of research has been done on the vibration response of single stage bladed
disks, far less has been done on multi-stage bladed disk systems. Sinha190 conducted Monte
Carlo simulations on a lumped parameter model of mistuned multi-stage systems to sim-
ulate the overall dynamics of multi-stage systems, but did not discuss its applicability to
multi-stage systems with realistic geometry for industrial models. An investigation of FEMs
of multi-stage bladed disks with blade mistuning was conducted by Bladh et al..182 It was
shown that multi-stage effects due to the inter-stage coupling can occur when the frequency
range of interest pass veering regions, where the motion of the disk is dominant. Addition-
ally, it was pointed out that, when each stage has a different number of blades, mistuning is
inherent in multi-stage systems due to the inter-stage coupling. Song et al.183 created a novel
reduced order modeling technique for multi-stage systems, and then united it with CMM
to efficiently handle mistuning in multi-stage systems.184 The approach was also used for
parameter identification in multi-stage systems186 and its applicability to structural health
monitoring monitoring was explored.180 Laxalde et al.187,188 proposed a method similar in
concept to Song,180 and applied the method for modal analysis and forced response calcu-
lations for multi-stage industrial bladed disks. Additionally, there has been recent work on
multi-stage effects induced by modeling the coupling between flexible shafts and rotors.191–195

In this work new characteristics of multi-stage systems are explored. In particular, a statis-
tical characterization of structural mistuning in multi-stage bladed disks is carried out. The
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results were obtained using CMM185 combined with a new multi-stage modeling approach
developed by D’Souza et al.,206 which is based on Song et al.;183 however, it only requires
the use of full single stage models (i.e. the multi-stage model is constructed in the reduced
order space only). In addition to the statistical characterization, a new efficient classification
method is detailed for characterizing modes of multi-stage bladed disk systems. Additionally,
the effects of structural mistuning on the characterization of the modes is explored.

12.1 Methodology

In this section the modeling methodology is briefly reviewed, and a new classification method
is described. The challenge associated with modeling multi-stage systems is caused by the
fact that even if each stage is cyclically symmetric the entire multi-stage system is not
(when the number of sectors in each stage is different). Song180 successfully overcame this
challenge by projecting the motion of the interface onto a set of Fourier basis functions and
then enforcing compatibility. The major drawback associated with his formulation was that
full multi-stage modes were needed when including small blade to blade mistuning. That
requires the explicit formulation and analysis of the full order FEM. Recently, D’Souza et
al.206 proposed a new method to tackle multi-stage systems that can handle a combination
of cyclic stages (this includes stages with small mistuning modeled with CMM) and non-
cyclic stages (stages including cracks, large mistuning, etc.) by performing only analyses on
individual stages (thus completely eliminating the need to form and analyze the full order
FEM). This work closely follows the methodology presented in D’Souza et al.,206 but here
all the stages are considered to have only mistuning. The following contains a brief review
of the method presented in D’Souza et al.206 and Song.180 Next, a new classification scheme
for modes of a multi-stage system is presented.

12.1.1 Multi-Stage ROMs from Cyclic Stages

A significant benefit of dealing with cyclic stages is that the analysis can be performed
on sectors (and double sectors) instead of the full stage model, thus greatly reducing the
computational cost. Let x(t) be the nodal displacement on all nodes of all sectors of one
stage. x(t) can be partitioned such that it is ordered based on sectors, i.e. x = [xT

1 , . . . ,x
T
N]T,

where N is the number of sectors in the stage. The motion of the nth sector can be described
by the following Fourier series36

xn = 1√
N
u0 +√ 2

N

Ñ−1∑
h=1

(uhc cos(n − 1)φh + uhs sin(n − 1)φh)
(165)+ 1√

N
(−1)n−1uÑ ,

where u denotes a vector of Fourier coefficients with subscripts c and s denoting cosine and
sine components, φh = 2πh/N , and Ñ = N/2 if N is even or Ñ = (N − 1)/2 if N is odd. Note
that the last term in Eq. (165) does not exist if N is odd. Grouping the Fourier coefficients in
matrix form ũ = [(u0)T, (uhc )T, (uhs)T, . . . , (uÑ)T]T, the physical coordinates can be related
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by the following linear map
x(t) = (FN,N ⊗ INs)ũ(t), (166)

where Ns is the number of degrees of freedom (DOFs) in a sector and FN,N is an N ×N
Fourier matrix.

A cyclic Craig-Bampton method developed by Bladh et al.6 can be applied to the displace-
ment field to obtain

ũ(t) ≃ΦCB p̃(t), (167)

where ΦCB = bdiag
h=0,...,Ñ

⎛⎜⎝INb
0

Ψh
i Φh

i

⎞⎟⎠, with bdiag
h=0,...,Ñ

(⋅) designating a block-diagonal matrix with the

argument being the hth block of the overall block-diagonal matrix. The matrix [ITNb
, (Ψh

i )T]T
contains the constraint modes for the hth harmonic, b indicates the inter-stage boundary, i
denotes the interior of the stage, and Nb is the number of DOF along the inter-stage boundary
of a single sector. A constraint mode for a stage is computed as the static deformation of the
interior of the stage when a unit displacement is applied to one DOF along the boundary
(and the rest of the boundary DOFs are fixed). The matrix Φh

i is a truncated set of fixed-
interface normal modes of the entire stage with all the boundary DOFs fixed. Finally, p̃(t)
is the generalized reduced coordinates, where the size of p̃(t) is much less than that of ũ(t).
Combining Eq. (166) and Eq. (167) yields

x(t) ≃ (FN,N ⊗ INs)ΦCB p̃(t). (168)

It can be noted that the motion along the inter-stage boundary is

xb(t) = (FN,N ⊗ INb
)ũb(t). (169)

After creating a ROM for each stage, the ROMs must be coupled. Consider the case where
two stages are being coupled with the first having N1 sectors and the second having N2

sectors. The inter-stage boundary DOF can then be partitioned as xbj = [xT
bj1
, . . . ,xT

bjN
]T ,

where j denotes the stage (i.e. j = 1 or 2). It is assumed that groups of nodes are aligned so
that they have the same angle in a cylindrical coordinate system aligned with the axis of the
multi-stage system. These groups of nodes are referred to as radial line segments, and Zj of
them exist in each sector of the jth stage. Therefore, stage 1 has N1Z1 radial line segments,
and stage 2 has N2Z2 radial line segments. The number of DOFs per radial line segment
is given by Nrj. Figure 85 is a schematic of the radial line segments along the inter-stage
boundary. Note that xbj can be partitioned as

xbj =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xrj1⋮
xrj(NjZj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (170)

where subscript r stands for the radial line segment and xbji contains xrjk for 1+ (i− 1)Zj ⩽
k ⩽ iZj.
Next, the motion of the kth radial line segment is approximated by the following truncated
Fourier series
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xrjk ≃ 1√
B
z0j +√ 2

B

P−1∑
h=1

(zhjc cos(k − 1)θhj + zhjs sin(k − 1)θhj)
(171)+ 1√

B
(−1)k−1zPj ,

where θhj ≜ 2πh/(NjZj), z represents the Fourier coefficients with superscript denoting the
harmonic number, and subscripts c and s corresponding to a cosine or sine term, and B is
the number of basis functions used for the Fourier expansion. Note that if B is even P = B/2,
while if B is odd P = (B − 1)/2 and the last term in Eq. (171) does not exist. Combining
Eq. (170) and Eq. (171) in matrix form gives

xbj =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xrj1⋮
xrjNjZj

,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≃ (FNjZj ,B ⊗ INrj

) z̃j, (172)

where FNjZj ,B is a NjZj × B Fourier matrix, and z̃j = [(z0j)T, (zhjc)T, (zhjs)T, . . . , (zPj )T]T.
Inverting Eq. (169) and combining it with Eq. (172) yields

ũbj(t) ≃ (FNj ,Nj
⊗ INbj

)T (FNjZj ,B ⊗ INjr
) z̃j. (173)
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The final step in the reduced order modeling process is to enforce geometric compatibility
along the inter-stage boundary, i.e. z̃1 = z̃2. The enforcement of the compatibility conditions
is approximate, however, the compatibility conditions are well posed180 as long as enough
Fourier coefficients B are used.

Mistuning can be incorporated into each stage with CMM by using a method detailed by
Lim et al..185 In particular, for stiffness mistuning only, the reduced order stiffness matrix
κj for the jth stage can be written as

κj = Λj + Nj∑
n=1

qTj,nr∈R(δλCBr,n,j)qj,n, (174)

where Λ is a matrix of tuned eigenvalues, qj,n are modal partipation factors, δλCBr,n,j is the
difference in the rth tuned and mistuned cantilevered blade eigenvalues for sector n of stage
j, and R is a set of retained cantilever blade modes.

12.1.2 Classification of Multi-Stage Modes

In this section a new classification scheme for multi-stage modes is discussed to better under-
stand the effects of mistuning and the effects of inter-stage coupling in multi-stage systems.
Two factors are used to classify the modes of a multi-stage system. The first factor is the
strain energy distribution. The strain energy E of the ith mode of an entire multi-stage sys-
tem can be calculated very easily and effectively in the ROM coordinates as Ei = φT

i Kφi,
where K is the multi-stage reduced order stiffness matrix, and φi is the ith mass normalized
eigenvector of the multi-stage system. A detailed derivation of the reduced order mass and
stiffness matrix can be found in previous works.183,206 The corresponding energy in the jth

stage is given by Eij = φT
ijKjφij, where Kj is the stiffness matrix for the jth stage, and φij is

the portion of φi that corresponds to the jth stage. The strain energy ratio for the ith mode
of stage 1 in a two stage system is given by

ERi1 = Ei1

Ei1 +Ei2

, (175)

while for stage 2 it is

ERi2 = Ei2

Ei1 +Ei2

. (176)

The two ratios ERi1 and ERi2 reflect the fractions of strain energy contained in each of the
two stages.

The second factor used for classifying the modes of a multi-stage system is a form of the
modal assurance criterion (MAC) number. The MAC number is a quantitative measure of
the alignment of two modes. If the modes are parallel, the MAC number is one, and if the
modes are orthogonal, the MAC number is zero. In this work, a variant of the MAC is used.
Specifically, MACij corresponds to the MAC number of the ith mode of the jth stage, and
it is defined as

MACij =max
k∈nj

HIIJ (φT
ijMjϕkj)2∣ φT

ijMjφij ∣∣ ϕT
kjMjϕkj ∣ , (177)
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Mode Classification Energy Distribution Modal Alignment Symbol
Stage 1 - single stage mode (S1 ) ER 1  > 0.9 MAC 1  > 0.9
Stage 1 - multi-stage mode (M S1 ) ER 1  > 0.9 MAC 1  < 0.9
Stage 2 - single stage mode (S2 ) ER 2  > 0.9 MAC 2  > 0.9
Stage 2 - multi-stage mode (M S2 ) ER 2  > 0.9 MAC 2  < 0.9

Multi-stage - double single 
stage mode (M S1,S2 )

ER 1  < 0.9 AND 
ER 2  < 0.9

MAC 1  > 0.9 AND
MAC 2  > 0.9 

Mult-stage mode (M1,2)
ER 1  < 0.9 AND 

ER 2  < 0.9
MAC 1  < 0.9 OR 

MAC 2  < 0.9 

Table 6
CLASSIFICATION OF SIX TYPES OF MODES USING THE ENERGY DISTRIBUTION AND
MODAL ALIGNMENT.

where Mj is the mass matrix of the jth stage, ϕkj is the kth single stage mode from the jth

stage, and nj is the set of single stage modes within the ROM of the jth stage that are within
a particular frequency range. This frequency range is related to the ith multi-stage frequency
ωi and the kth single stage frequency ωkj of stage j. The criteria is that the frequency of the
single stage mode must be within a given tolerance ε of the multi-stage mode for the single
stage and multi-stage modes to be compared, i.e.

ε ≥ ∣ ωi − ωkj ∣
ωi

× 100%. (178)

In this work the tolerance ε was set to 10%, which means that the single stage mode must
be within 10% of the multi-stage mode in order for the modal alignment to be tested.

Using the information from Eqns. 175, 176 and 177, six types of modes are possible. Essen-
tially, the energy ratio is used to classify the dominance of the mode as stage 1, stage 2, or
multi-stage. Then, the MAC number is used to identify if the multi-stage mode is actually
aligned with a corresponding single stage mode. A summary of these mode types is given in
Tab. 6.

12.2 Analysis

Many ROMs were created using the methodology presented in the Multi-Stage ROMs from
Cyclic Stages section herein. The system analyzed is a two stage rotor shown in Fig. 86.
The first stage of the blisk contains 25 identical blades and the second stage contains 23
blades. Single stage analyses were conducted on each stage to obtain the frequency versus
nodal diameter plots shown in Fig. 87. In the frequency range 0−8 kHz, there are two mode
families for stage 1, and three mode families for stage 2.

The FEM of the multi-stage system contains 136,488 DOFs, while each of the ROMs contains
only 592 DOFs (0.5% of the original FE size). Each ROM uses 23 Fourier basis functions to
model the dynamics at the interface between stages. Note that the full multi-stage FEM never
needs to be assembled to create the ROMs in this work, it is only constructed for validation
purposes. The ROMs were created from 1, 000 different mistuning patterns applied to each
stage with 20 different mistuning levels with standard deviations ranging from 0% to 10%.
While the ROMs were developed to be valid (with respect to the full FEM) over a frequency
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Fig. 87. NODAL DIAMETER VERSUS FREQUENCY PLOTS FOR (a) STAGE 1 AND (b)
STAGE 2.

range of 0−20 kHz, the results below are focused on a narrower frequency range of 0−8 kHz.
One mistuned ROM with a 4% standard deviation mistuning level was validated with respect
to the FEM. The relative error of the ROM frequencies with respect to the FEM for the
first 200 modes was less than 0.05%. Additionally, forced response calculations were carried
out in the multi-stage frequency regime 2.8 − 3.4 kHz. The error at the peak responses was
approximately 1% on both stages.

The first set of multi-stage results obtained is a classification of the tuned system modes
of the multi-stage system using the criteria given in Tab. 6. The results are summarized in
Fig. 88 for the first 120 modes. For Fig. 88(a), the x-axis is the eigenvalue index, while the
y-axis is the multi-stage natural frequency. For Fig. 88(b), the x-axis is the eigenvalue index,
while the y-axis is the energy ratio in stage 2 ER2 (a value of 1 indicates that the energy
is contained entirely in stage 2, while a value of 0 indicates that the energy is contained
entirely in stage 1). For Fig. 88(c), the x-axis is again the eigenvalue index, while the y-axis
is the relative frequency difference between modes computed for the multi-stage system and
the corresponding modes computed for a single stage system. Note that for all multi-stage
modes (MS1, MS2 and M1,2), no value is plotted because there is no single stage mode to
compare with these multi-stage modes.

It is evident that there are a couple of narrow frequency ranges, e.g. 2 − 2.4 kHz and 6.5 −
7.0 kHz, where stage 2 only models may be used to model the tuned system dynamics.
Whereas other regions tend to include a mixture of S1, S2, MS1, and M1,2 modes, which
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Fig. 88. (a) FREQUENCIES OF THE TUNED MULTISTAGE SYSTEM, (b) ENERGY RATIO
IN THE CORRESPONDING MODES, AND (c) RELATIVE FREQUENCY DIFFERENCE BE-
TWEEN THE MULTI-STAGE SYSTEM AND THE SINGLE STAGE SYSTEM MODES.

means that these regions require a multi-stage analysis to be valid.

Next we examine the effects of mistuning. Consider the mistuned results for 1,000 distinct
mistuning patterns with a standard deviation of the mistuning of 5%. The results are pre-
sented in Fig. 89(a) with the same layout as in Fig. 88(a), with the tuned frequencies once
again being plotted. All classification symbols are plotted for each index if that classification
occurs for at least one mistuning pattern. In Fig. 89(b), the corresponding probability for
each classification at each eigenvalue index is plotted. This figure shows the very complex
interactions and possibilities that exist when dealing with statistical distributions of mis-
tuning patterns in multi-stage systems. For example, consider the narrow frequency ranges
2 − 2.4 kHz and 6.5 − 7.0 kHz where single stage analyses can be used for the tuned system.
For mistuned systems, in these ranges there is approximately a 20% chance that some of
the modes are multi-stage MS2 modes. Outside of those narrow frequency ranges even more
complex interactions occur which lead to a probability of the creation MS1, MS2, MS1,S2,
and M1,2 modes.

To investigate the effects of mistuning on the multi-stage system, the alignment of each
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Fig. 89. (a) FREQUENCIES OF THE MISTUNED MULTISTAGE SYSTEM AND (b) THE
PROBABILITY OF THE CLASSIFICATION OF THE CORRESPONDING MODES.
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Fig. 90. ALIGNMENT OF MISTUNED MULTI-STAGE MODES WITH TUNED MULTI-STAGE
MODES.

mistuned multi-stage mode with its corresponding tuned multi-stage mode was also calcu-
lated. The results for the modes in the frequency range 2.5 − 3.5 kHz are plotted in Fig. 90.
The mistuning level was 5% and 1, 000 different mistuning patterns were simulated. Average
alignments and standard deviation bars are plotted in Fig. 90. The alignment is calculated
in the reduced space between mass normalized tuned and mistuned eigenvectors using the
MAC number. One can observe that the more isolated modes (23− 27) have a much greater
mistuned-tuned alignment than the rest of the modes in this mode family. That is consistent
with the intuitive observation that the mistuned modes in the flat region of a mode family
can change shape (compared to their tuned versions) more than other modes.

To better understand the results presented in Fig. 88 and Fig. 89, forced response calculations
were conducted. A structural damping of the form jγK was used, where j = √−1, γ = 0.002,
and K is the stiffness matrix. Also, forces were applied at the tip of the blades with specified
engine order excitations, and the maximum response of the excited nodes was collected as
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Fig. 91. FORCED RESPONSE OF STAGE 2 FOR A SET OF STAGE 2 DOMINATED MODES,
WHICH ARE S2 WHEN TUNED AND MS2 WHEN MISTUNED (TUNED SINGLE STAGE
ANALYSIS [x], TUNEDMULTI-STAGE ANALYSIS [-], MISTUNED SINGLE STAGE ANALYSIS
[◻], AND MISTUNED MULTI-STAGE ANALYSIS [. . . ]).

the maximum forced response. These tip nodes were used for the forced response because
the dominant motion on both stages is due to the first flexural modes (see Fig. 87 and
Fig. 88) from both stages for the range of frequencies investigated. First an engine order 1
excitation was applied at 512 evenly sampled frequencies from 2 kHz to 2.4 kHz. The y-axis
of the plot corresponds to the maximum response of the excited nodes. Figure 91 shows the
forced response of stage 2 for four cases. The first case is when a single stage analysis is
conducted on the tuned stage 2. The second case is when a multi-stage analysis is conducted
on the tuned multi-stage system. The third case is when a single stage analysis is conducted
on a mistuned stage 2. The final case is a multi-stage analysis of the mistuned multi-stage
system. The tuned single and tuned multi-stage results have a very similar magnitude with
just a shift in frequency location, which agrees with the results presented in Fig. 88 (which
shows that the MAC is greater than 0.9 over the entire frequency range). Note, due to the
difference in frequency between the single and the multi-stage modes (shown in Fig. 88(c)),
a slight shift in frequency for the largest responses is to be expected. The mistuned single
stage and multi-stage analyses do not match as well as the tuned analyses. They contain
significant differences in amplitude and location of peaks. This agrees with Fig. 89 since a
mistuning pattern was chosen which would have at least one MS2 mode in the frequency
range of interest. This means that at least one MAC number is less than 0.9 in the frequency
range of interest, and therefore the single stage modes are no longer aligned with the modes
of the multi-stage system over this frequency range. Additionally, the results for stage 1 are
not plotted since for all four cases the amplitude of vibration is very low, which is to be
expected because ER1 < 0.1 for all modes in the frequency range for all four cases. This
highlights that a mode of a multi-stage system can be energetically contained to a single
stage and yet may still be significantly different than a single stage mode. Hence, multi-stage
calculations must be performed to accurately predict the response of such systems.

Forced response simulations were also conducted at 1,024 evenly spaced points from 2.8 −
3.4 kHz using an engine order 1 excitation. As can be seen from Fig. 88 and Fig. 89 the
modes in this frequency range are characterized as stage 1 dominated modes (S1 and MS1)
and multi-stage modes (M1,2). The results for these simulations are presented in Fig. 92 (and
the four cases are the same as the ones presented in Fig. 91). Due to important multi-stage
effects there is a significant response in both stages. The single stage analyses (tuned and
mistuned) cannot capture these multi-stage effects. In Fig. 92(b), the single stage analyses
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Fig. 92. FORCED RESPONSE FOR A SET OF S1, MS1, AND M1,2 MODES FOR (a) STAGE 1
AND (b) STAGE 2 (TUNED SINGLE STAGE ANALYSIS [x], TUNED MULTI-STAGE ANALY-
SIS [-], MISTUNED SINGLE STAGE ANALYSIS [◻], AND MISTUNED MULTI-STAGE ANAL-
YSIS [. . . ]).

(both tuned and mistuned) predict almost no motion over this frequency range, but the
multi-stage analyses (both tuned and mistuned) show that there is considerable motion. In
Fig. 92(a), there is motion predicted by the single stage analyses (which is to be expected
since single stage dominated modes are present), but the magnitude and frequency are not
accurate. Hence, multi-stage calculations are certainly required.

The results in Fig. 92 indicate when the multi-stage analyses (versus single stage analyses)
are of primary importance for both tuned and mistuned systems. In contrast, Fig. 91 shows
that single stage analyses are valid for tuned systems (with just a slight frequency shift).
However, single stage analyses are not valid for arbitrary mistuned systems. To predict the
validity of single stage versus multi-stage and tuned versus mistuned analyses one must use
Figs. 88 and 89.

A key parameter that affects both the classification of modes and the forced response of the
system is the level of mistuning. Figure 93 explores the effect of the mistuning level on the
multi-stage mode classification. Figure 93(a) is a plot of MAC1 versus mistuning level for
mode 36 (a stage 1 dominated mode) for 100 mistuning patterns with average and standard
deviation bars plotted. Figure 93(b) is a plot of MAC2 versus mistuning level for mode 6 (a
stage 2 dominated mode) for 100 mistuning patterns with average and standard deviation
bars plotted. The deviations for mode 36 are larger than for mode 6, which is to be expected
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Fig. 93. MAC NUMBER VERSUS MISTUNING LEVEL FOR (a) MODE 36 [S1, MS1] AND
(b) MODE 6 [S2, MS2] (ERROR BARS INDICATE THE STANDARD DEVIATION OF THESE
VALUES FOR 100 MISTUNING PATTERNS).

since (from Fig. 89(b)) mode 36 has a 60% chance of changing from S1 to MS1 at a 5%
mistuning level, whereas mode 6 has only an 18% chance of changing from S2 to MS2. Also,
as expected, initially the deviations in the MAC number for both modes increases while
the actual average MAC number decreases as the mistuning level increases. However, it is
interesting to note that the average MAC numbers and the deviations in the MAC number
level off at around 4 − 5% standard deviation in the mistuning level.

Figure 94 contains amplification factor plots for stage 1 and 2 of the 99th percentile response
of 100 mistuning patterns for engine order excitation 0 to 11 and mistuning levels from
0% to 10% over the frequency range 2.8 − 3.4 kHz. One hundred separate forced response
calculations were performed at each unique mistuning level and engine order excitation
combination. In this case, the amplification factor for each stage is defined as the number
that when multipled by the tuned response at a given engine order excitation would give the
99th percentile maximum response for this set of mistuning patterns.

The results in Fig. 94 show that stage 2 has a much larger amplification factor than stage 1.
This does not mean that the response of stage 2 is larger, in fact it is an order of magnitude
lower. The actual 99th percentile response for these mistuning patterns for stage 1 and 2 are
shown in Fig. 95. Note that the motion at lower engine order excitations is larger than at
higher engine order excitations. This is likely due to the the multi-stage region moving from
one family of stage 2 dominated modes to stage 1 dominated modes (see Figs. 87 and 88).
This region relates to nodal diameters 0, 1 and 2 (of stage 1) and also corresponds to a kind
of veering region where blade and disk motion are coupled, which leads to larger responses.
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Fig. 94. FORCE AMPLIFICATION FACTOR VERSUS MISTUNING LEVEL AND ENGINE
ORDER EXCITATION FOR THE MULTI-STAGE SYSTEM FOR (a) STAGE 1 AND (b) STAGE
2.
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Fig. 95. MAXIMUM FORCE RESPONSE VERSUS MISTUNING LEVEL AND ENGINE ORDER
EXCIATION FOR THE MULTI-STAGE SYSTEM FOR (a) STAGE 1 AND (b) STAGE 2.
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